
AFRL-IF-WP-TR-2003-1541

ALGORITHMS FOR DATA INTENSIVE
APPLICATIONS ON INTELLIGENT
AND SMART MEMORIES

Viktor K. Prasanna

University of Southern California
Departments of Contracts and Grants
University Park
Los Angeles, CA 90089-1147

MARCH 2003

Final Report for 15 June 1999 – 31 January 2003

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

Approved for public release; distribution is unlimited.

N QTI CE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

APPROVED FORHAS BEEN REVIEWED AND ISTHIS TECHNICAL
PUBLICATION.

REPORT

w.IlrwJ
ANDREW W. HYATT, 2Lt, USAF
Program Monitor

ROBERT A. EHRET, Chief
Collaborative Simulation Technology & Applications Branch
Information Systems Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document require its return.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

March 2003 Final 06/15/1999 – 01/31/2003
5a. CONTRACT NUMBER

F33615-99-1-1483
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

ALGORITHMS FOR DATA INTENSIVE APPLICATIONS ON
INTELLIGENT AND SMART MEMORIES

5c. PROGRAM ELEMENT NUMBER
69199F

5d. PROJECT NUMBER
ARPI

5e. TASK NUMBER
FS

6. AUTHOR(S)

Viktor K. Prasanna

5f. WORK UNIT NUMBER

06
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Southern California
Departments of Contracts and Grants
University Park
Los Angeles, CA 90089-1147

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/IFSD
Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base,
OH 45433-7334

DARPA / IPTO
3701 Fairfax Drive
Arlington, VA 22203-1714

Office of Naval Research
4520 Executive Drive, Suite
300
San Diego, CA

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

 AFRL-IF-WP-TR-2003-1541

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Report contains color. Report contains software or code.
14. ABSTRACT (Maximum 200 Words)
During the course of this contract research was focused on techniques for improving processor-memory efficiency and performance on traditional,
cache-based processors, and on state-of-the-art configurable cache and Processing-in-Memory designs. Work was done for matrix multiplication
and the transitive closure stressmark, and cache performance optimizations were developed and shown to be effective. It was shown that these
techniques can be used on a large class of algorithms. Significant contributions include the Unidirectional Space Time Representation (USTR) and
a novel recursive implementation of the Floyd-Warshall algorithm. Using the USTR it is possible to quickly generate cache-friendly
implementations of a large class of algorithms. The generalized split temporal/spatial cache architecture was defined as an abstraction of several
application-controlled advanced cache architectures. Various graph algorithms were studied to identify the inefficiencies in the memory hierarchy
and develop explicit cache management algorithms. Analytical performance estimations were derived for several problems, and simulations of
optimized applications showed reduced memory traffic and improved average memory access times. A high-level simulator was implemented for
Processing in Memory (PIM) architectures. The simulator allows faster development cycles and a better understanding of how an application will
port to other PIM architectures. The simulator was verified against low-level simulation results.

15. SUBJECT TERMS

Performance, Modeling, Prediction, Algorithms, Optimization, Memory Hierarchy, Cache, Transitive Closure, Matrix
Multiplication, PIM, Application Directed, Explicit Cache Management

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

164

19a. NAME OF RESPONSIBLE PERSON (Monitor)
 Lt. Andrew Hyatt
19b. TELEPHONE NUMBER (Include Area Code)

(937) 904-9162
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

Contents
 Section Page.

1 Summary Report..1
 1.1 Introduction...3

1.2 Summary of ADVISOR Project Accomplishments ...4
1.2.1 Introduction to Memory Performance Optimizations4
1.2.2 Performance Improvements ...11
1.2.3 Modeling and Simulation of Flexible Memory Architectures12
1.2.4 Performance Modeling of Processing-in-Memory (PIM) Architectures15
1.2.5 Final Stressmark Performance Improvements Report18

1.3 Lessons Learned..19
1.4 Technology Transition..20
1.5 Papers Acknowledging this Contract..22

2 Copies of Papers Acknowledging this Contract...24

2.1 Application Directed Explicit Management for Advanced Cache Architectures...25
2.2 Performance Modeling of Interpretive Simulation of PIM Architectures and
Applications ...41
2.3 Optimizing Graph Algorithms for Improved Cache Performance..........................46
2.4 Cache-Friendly Implementations of Transitive Closure...89
2.5 Analysis of Memory Hierarchy Performance of Block Data Layout.....................101
2.6 Tiling, Block Data Layout, and Memory Hierarchy Performance111

3 Final Stressmark Results Submission ...141

4 Appendix: Source Code Information ..153

WallacJR
iii

WallacJR

)--

Final Project Report

Introduction

The objective of this project was to develop an algorithmic framework that
enables effective and efficient mapping of data intensive applications onto
Intelligent and Smart memory architectures, as well as traditional cache
architectures. Intelligent memories integrate processing logic on the same
chip as memory and support high bandwidth and low latency memory ac-
cess to on-chip memory. Smart memory architectures provide the ability
to adapt the hardware behavior by modifying the memory controllers to
enhance cache and memory performance. Effective use of these novel fea-
tures requires innovative mapping techniques in addition to the utilization
of higher bandwidth and/or lower latency offered by these advanced archi-

tectures.

This report details the research accomplished in this project. In Section
1 we present a summary of the work accomplished, highlighting some of
the results and approaches investigated. Section 2 contains copies of all
papers published that acknowledge this contract. Section 3 contains the fi-
nal stressmark results and analysis of the methods used to optimize various
data-intensive stressmarks. Section 4 contains information about the source
code, including methods for building the code, and the platforms for which

the code is intended.

The CD included with this binder contains all of the source code used in
the project, with instructions for building the code, and a soft copy of the

complete report.

/"""""

WallacJR
1

WallacJR

Summary of ADVISOR Project Accomplishments

Contents

� Introduction �

� Summary of Accomplishments �
��� Introduction to Memory Performance Optimizations � � � � � � � � � � � � � � � � � � �

����� Unidirectional Space Time Representation �
����� Tiled Implementation of the Floyd
Warshall algorithm � � � � � � � � � � � � � �
����� Data Layouts for Recursive Programs �
����� Graph Matching �
����� Block Data Layout Optimization �
����� Cache
conscious data layout based on Perfect Latin Squares � � � � � � � � � � 	

��� Performance Improvements �
��� Modeling and Simulation of Flexible Memory Architectures � � � � � � � � � � � � � � ��
��� Performance Modeling of Processing
in
Memory PIM� Architectures � � � � � � � � � ��
��� Final Stressmark Performance Improvements Report � � � � � � � � � � � � � � � � � � ��

� Lessons Learned ��

� Technology Transition ��

��� Impulse project Univ� of Utah� �	
��� SLIIC and DIVA projects USC�ISI� ��
��� ATLAS project interactions ��

� Papers Acknowledging this Contract ��

WallacJR

WallacJR

WallacJR

WallacJR
2

� Introduction

The motivation for this work is what is commonly referred to as the processor
memory gap ��� ���
�� ���� While memory density has been growing rapidly� the speed of memory has been far outpaced
by the speed of modern processors� Current latencies to memory are on the order of ��� processor
cycles ����� This phenomenon has resulted in severe application level performance degradation on
high
end systems� This problem has been well studied for many applications� such as dense linear
algebra problems ��	�� including matrix multiplication and FFT�

Achieving better overall performance by optimizing cache performance is a di�cult problem�
The performance of deep memory hierarchies present in most modern processors has been shown
to di�er signi�cantly from predictions based on a single level of cache� Di�erent miss penalties for
each level of the memory hierarchy� as well as the Translation Lookaside Bu�erTLB�� a�ect the
e�ectiveness of cache
friendly optimizations ���� ��� These penalties vary among processors and
cause large variations in the e�ectiveness of cache performance optimizations�

The area of graph problems is fundamental in a wide variety of �elds� most notably network
routing� distributed computing� and computer aided circuit design� Network routing in particular
is a rapidly growing problem with the explosion of the Internet� Routing tables are growing in size
and the frequency of updates is pushing the limits of current routers ����� Graph problems pose
unique challenges to improving cache performance due to their irregular data access patterns ����
These challenges often cannot be handled using standard cache
friendly optimizations� The focus
of this research is to develop methods of meeting these challenges�

The objective of this project was to develop an algorithmic framework that enables e�ective and
e�cient mapping of data intensive applications onto Intelligent and Smart memory architectures
���� Intelligent memories integrate processing logic on the same chip as memory and support high
bandwidth and low latency memory access to on
chip memory ���� �� ���� Smart memory archi

tectures provide the ability to adapt the hardware behavior by modifying the memory controllers
to enhance cache and memory performance ���� ���� E�ective use of these novel features requires
innovative mapping techniques in addition to the utilization of higher bandwidth and�or lower
latency o�ered by these advanced architectures�

A suite of data intensive kernels or stressmarks designed to stress the memory hierarchy was
provided by the Data Intensive Systems Program �	�� We have explored various optimizations of
these stressmarks� including cache
friendly data layouts such as block layouts and recursive layouts�
and we have developed simulators that can model these applications on cutting
edge processor
architectures�

During the course of this project the focus Figure �� has been on techniques for improving
and understanding cache performance on traditional� cache
based processors� The majority of the
work was done for the Data Intensive Systems stressmark package� It includes transitive closure
stressmark� BiConjugate Gradient� FFT� pointer following� and others� It was also shown that
these techniques can be used on a large class of algorithms�

Signi�cant contributions include the Unidirectional Space Time Representation USTR� and a
tiled and a novel recursive implementation of the Floyd
Warshall algorithm� Using the USTR it is
possible to quickly generate cache
friendly implementations of a large class of algorithms� Simula

tors and stressmark implementations were developed for �exible memory architectures FMA� with
split caches� Processor
Integrated
Memory PIM� systems� and a recursive simulator for massively
parallel systems such as the IBM BlueGene�

�

WallacJR

WallacJR
3

Advanced Architectures

Application Developer

Characterized advanced architectures
Estimated performance bounds

Developed algorithm design techniques for

mapping applications to architectures

Modeled data intensive applications Created a
framework for

application
developers to

exploit features of
traditional and

advanced
architectures to

achieve high
performance

IMPULSE, IRAM,
DIVA, Cache Based

Architectures …

DIS Benchmarks
and Stressmarks

Advanced Architectures

Application Developer

Characterized advanced architectures
Estimated performance bounds

Developed algorithm design techniques for

mapping applications to architectures

Modeled data intensive applications Created a
framework for

application
developers to

exploit features of
traditional and

advanced
architectures to

achieve high
performance

IMPULSE, IRAM,
DIVA, Cache Based

Architectures …

DIS Benchmarks
and Stressmarks

Figure �� Accomplishments of the Advisor project

� Summary of Accomplishments

��� Introduction to Memory Performance Optimizations

For most regular and irregular applications� cache and TLB behavior has a signi�cant e�ect on
performance� Memory in modern microprocessor systems is composed of a hierarchy of small� fast
memories fed by large� slower memories Figure ��� The Cache is a small memory area where
recently and often used data is stored on the assumption that it will be used again soon� This
prevents long delays in accessing the main memory� The TLB� or Translation Lookaside Bu�er�
is an even smaller� special purpose memory that holds a limited amount of information to help
applications convert their memory references into addresses in the physical memory system ����
State
of
the
art data layouts and control transformations attempt to minimize capacity misses and
interference misses in the cache hierarchy� Control optimizations like tiling reduce the working set
and improve cache behavior by reducing capacity misses�

MemoryProcessor Cache

T
L
B

MemoryProcessor Cache

T
L
B

Figure �� Memory hierarchy of a general microprocessor system

We have performed analysis of TLB� cache and DRAM behavior for various algorithms like
matrix multiplication and a class of graph algorithms� Our work extends previous research on ana

lyzing cache performance by taking a uni�ed approach towards the tradeo�s involved in optimizing
data and control transformations for various levels of the cache hierarchy� We have demonstrated
speedups for these algorithms by selectively applying novel optimizations in addition to a set of
common optimizations� based on cache behavior analysis� We formalized the lessons learned in the
form of rules for a compiler framework for loop optimizations in data intensive computations�

�

WallacJR
4

WallacJR

����� Unidirectional Space Time Representation

The Floyd
Warshall algorithm is a dynamic programming algorithm ���� which computes a series
of N � N �N matrices where Dk is the kth matrix and is de�ned as follows� Dk

�i�j� � shortest path

from vertex i to vertex j composed of the subset of vertices labeled � to k� The matrix D� is the
original graph G� We can think of the algorithm as composed of N steps� At each kth step� we
compute Dk using the data from Dk�� in the manner shown in Figure � for each i� j�th value�
Dijkstra�s algorithm is designed to solve the single
source shortest path problem� It does this by
repeatedly extracting from a priority queue Q the nearest vertex u to the source� given the distances
known thus far in the computation Extract
Min operation�� Once this nearest vertex is selected�
all vertices v that neighbor u are updated with a new distance from the source Update operation��

Transitive closure� as an irregular problem� poses unique challenges to improving cache perfor

mance� challenges that often cannot be handled by standard cache
friendly optimizations�

A number of approaches have been taken to address the Transitive Closure stressmark� We
have evaluated various approaches to optimize its performance with respect to processing time
and processor
memory tra�c� In this area we have also considered the single source shortest path
problem� the minimum spanning tree problem and the problem of graph matching as these are
related graph problems�

The Unidirectional Space Time Representation USTR� was developed to uniquely address the
complexities of transitive closure�

…

…

A11

A12

A1N

A11

A21

A1N

= processor for result (i, j)

…

…

A21

A12 …

…

A11

A12

A1N

A11

A21

A1N

= processor for result (i, j)

…

…

A21

A12

A = Adjacency Matrix

Figure �� Simple USTR for Transitive Closure

First we will explain what we mean by a space
time representation� Consider a problem in which
the result is an N �N matrix� We divide the problem in space by representing the computation
required to calculate each result as a computational element CE� in an N �N array� for example�
the multiply
add operations required in a matrix multiply� Referring to Figure �� each circle in the
space represents the computation required for the i� j�th result� The notion of time comes from
the data �owing through this N �N array of CEs�

Referring to Figure � again� the data A would �ow row
wise into the array from the left and the
data B would �ow column
wise into the array from the top� As the data �ows through the array�
each element does some simple computation on the data inside it and passes on the data� Once
the data has �owed completely through the array� the i� j�th result lies in the corresponding CE�
The space
time representation is much like a systolic array design� If each CE were viewed as a
processor� the result would be an N �N systolic array� The distinction that we add is the notion

�

WallacJR
5

of unidirectional data �ow� We only allow data to �ow in the forward direction� either down or to
the right� This allows us to generate a cache
friendly implementation�

In general the following to any problem that can be solved using an Unidirectional Space Time
representation�

Theorem�Given an USTR of an algorithm� we can reduce the amount of processor�memory traf�

�c by a factor of �� where cache size is O���� compared with a baseline implementation�

The USTR implementation of the Floyd
Warshall algorithm was shown in Simplescalar simu

lations to give a ��x decrease in level
� cache misses based on the Pentium III architecture�� This
implementation out
performed the best compiler optimizations by a factor of � on the Pentium III�
Alpha� and MIPS R����� architectures� It can also be shown that the USTR implementation of
the Floyd
Warshall algorithm is asymptotically optimal with respect to processor
memory tra�c�
These results are detailed in �Cache Friendly Implementations of Transitive Closure� by Michael
Penner and Viktor Prasanna� which appeared in the proceedings of PACT ����� and is contained
in Section �� A novel recursive implementation as well as a new blocked implementation of the
Floyd
Warshall algorithm have also been developed� In initial experiments these implementations
show a ��x improvement over the compiler optimized implementation on the MIPS R������ They
also show between �x and �x for the Pentium III� Alpha� and SUN ULTRASPARC III� The source
code for these optimizations is contained in Section ��

����� Tiled Implementation of the Floyd	Warshall algorithm

The basic goal of tiling is to reduce the work set size so that the problem will �t into the cache�
Through our technique we satisfy the data
dependencies by reordering the smaller problems or
tiles� This technique showed up to ��x improvement for the Floyd
Warshall algorithm� This
implementation was also shown to be asymptotically optimal with respect to processor
memory
tra�c�

Compiler groups have used tiling to achieve higher data reuse in looped code� Unfortunately� the
data dependencies from one k
loop to the next in the Floyd
Warshall algorithm make it impossible
for current compilers including research compilers to perform � levels of tiling� In order to tile the
outermost loop we must cleverly reorder the tiles in such a way that satis�es data dependencies
from one k
loop to the next as well as within each k
loop�

Consider the following tiled implementation of the Floyd
Warshall algorithm� Tile the problem
into B�B tiles� During the kth block iteration� update �rst the k� k�th tile� then the remainder of
the k th row and kth column� then the rest of the matrix� Figure � shows an example matrix tiled
into a �x� matrix of blocks� Each block is of size B � B� During each outermost loop� we would
update �rst the black tile representing the k� k�th tile� then the grey tiles� then the white tiles�
In this way we satisfy all dependencies from each kth loop to the next as well as all dependencies
within each kth loop�

Theorem� The new tiled implementation of the Floyd�Warshall algorithm reduces the processor

memory tra�c by a factor of B where B� is on the order of the cache size�

For more information� see �Optimizing Graph Algorithms for Improved Cache Performance��
in Proceedings of the International Parallel and Distributed Processing Symposium� April �����
Joon
Sang Park� Michael Penner� and Viktor K� Prasanna�

�

WallacJR
6

����� Data Layouts for Recursive Programs

Recursive implementations have recently been used to increase cache performance� However� Floyd

Warshall has proven to be di�cult to implement recursively� because the Floyd
Warshall algorithm
not only contains all the dependencies present in ordinary matrix multiplication� but also additional
dependencies that can not be satis�ed by the simple recursive implementation of matrix multiply�
We have developed a novel recursive implementation of the Floyd
Warshall algorithm� which ap

pears in Figure �� We also proved the correctness of the implementation and showed analytically
that it reaches an asymptotically optimal amount of processor memory tra�c�

Floyd-Warshall (A)

{

A11 = min(A11, A11+A11);

A12 = min(A12, A11+A12);

A21 = min(A21, A21+A11);

A22 = min(A22, A21+A12);

A22 = min(A22, A22+A22);

A21 = min(A21, A22+A21);

A12 = min(A12, A12+A22);

A11 = min(A11, A12+A21);

}

FWR (A, B, C)

{

if (not base case)

{

FWR(A11, B11, C11);

FWR(A12, B11, C12);

FWR(A21, B21, C11);

FWR(A22, B21, C12);

FWR(A22, B22, C22);

FWR(A21, B22, C21);

FWR(A12, B12, C22);

FWR(A11, B12, C21);

}

 else

{

/* run standard Floyd-Warshall */

…

}

}

a�
b�

Figure �� Floyd
Warshall Source a� Base case algorithm b� Recursive algorithm

The Z
Morton layout Figure �c�� has been used to match the data layout to the access pattern�
The Z
Morton ordering is a recursive layout de�ned as follows� Divide the original matrix into �
quadrants and lay these tiles in memory in the order NW� NE� SW� SE� Recursively divide each
quadrant until a limiting condition is reach� This smallest tile is typically laid out in either row or
column major fashion Elements laid out row
wise inside blocks�

Through experiments on four di�erent architectures we show that our Block Data Layout Fig

ure �b�� performs equally as well as the Z
Morton layout for recursive programs� The Z
Morton
layout has also been used as a non
linear array layout for tiled applications� In this context� we
show that our Block Data layout performs equally as well and signi�cantly decreases the index
computation costs�

We showed up to �x improvement when we set the base case such that the base case would
utilize more of the cache closest to the processor� Once we reached a problem size B� where B� is on
the order of the cache size� we execute a standard iterative implementation of the Floyd
Warshall
algorithm� This improvement varied from one machine to the next and is due to the decrease in the
overhead of recursion� We have shown that the number of recursive calls in the recursive algorithm
is reduced by a factor of B� when we stop the recursion at a problem of size B�

�

WallacJR
7

640 1 5

16 17 20 21

32 33 36 37

40 41 44 45

34 35 38 39

42 43 46 47

48 49 52 53

56 57 60 61

50 51 54 55

58 59 62 63

10 11 14 15

26 27 30 31

8 9 12 13

24 25 28 29

2 3 7

18 19 22 23

�a� Row�major layout

6

40 1 5

16 17 20 21

32 33 36 37 40 41 44 45

34 35 38 39 42 43 46 47

48 49 52 53 56 57 60 61

50 51 54 55 58 59 62 63

10 11 14 15

26 27 30 31

8 9 12 13

24 25 28 29

2 3 7

18 19 22 23

�b� Block data layout

6

40 1 5 16 17 20 21

32 33 36 37

40 41 44 45

34 35 38 39

42 43 46 47

48 49 52 53

56 57 60 61

50 51 54 55

58 59 62 63

10 11 14 15 26 27 30 31

8 9 12 13 24 25 28 29

2 3 7 18 19 22 23

I II

III IV

�c� Morton data layout

Figure �� Various data layouts� block size �� � for b� and c�

����� Graph Matching

Graph matching is an important problem that �nds uses in pattern recognition for computer vision�
face recognition and tracking of objects�

Graph matching forces algorithm designers to deal with dependencies that require possible
examination of the entire graph during each step of the computation� By partitioning the graph
into sub
graphs that will �t into the cache and �nding the local maximum we can drastically reduce
total amount of work for the entire graph Figure ��� Experimental results show performance
improvements are highly dependent on the density of the graph� For dense graphs a very good
match can be found in the initial tiled phase and execution time can be improved by as much as
��x� Average performance improvements ranged between �x and �x Figure ���

CacheFriendlyMatching(G)
{

Partition G into g[1], g[1], …, g[p];
For i = 1 to p

m[i] = FindMatching(g[i],);
M = MergeAll(m);
M = FindMatching(G, M);
return M;

}

0

�a�

FindMatching(G, M)
{

while (there exists an augmenting path)
{

increase |M| by one using the augmenting path;
}
return M;

}

�b�

Figure �� Pseudocode for Graph Matching techniques

Our technique is not just an alternative way of �nding a good starting matching� although it
may seem like� but a general framework for improving performance of algorithms� For example�
our technique allows additional enhancement in the presence of any greedy procedure for �nding a
good starting point by regarding the greedy procedure plus augmenting as a whole algorithm and
applying our technique�

Roughly speaking� the complexity of our new implementation of matching algorithm depends on
the graph
partitioning algorithm used in the �rst stage� The bound of the cardinality of a matching
obtained at the �rst stage determines the overall complexity and the partitioning algorithm a�ects
the bound� Also the complexity of partitioning algorithm itself a�ects the overall complexity our
algorithm if it becomes the dominant factor�

�

WallacJR
8

 Speed-up vs. density results

Cache Performance

Baseline New impl.

Accesses 853 578

Misses 127 32

Miss Rate 14.86% 5.56%

(Input: 8K nodes, 0.1 density)
6
)(10

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

Density

Pentium III UltraSPARC III

Figure �� Graph Matching Optimization Results

We presented a paper� �Optimizing Graph Algorithms for Improved Cache Performance�� at the
��th annual IEEE � ACM International Parallel and Distributed Processing Symposium IPDPS
������ This paper can be found in Section �� Our graph matching strategy used combinations of
a number of di�erent techniques�

����� Block Data Layout Optimization

Several experimental studies were conducted on block data layout as a data transformation tech

nique used in conjunction with tiling to improve cache performance�

To support multi
dimensional array representations in current programming languages� the
default data layout is row
major or column
major� denoted as canonical layouts� Both row
major
and column
major layouts have similar drawbacks� For example� consider a large matrix stored
in row
major layout� Due to large stride� column accesses can cause cache con�icts� Further� if
every row in a matrix is larger than the size of a page� column accesses can cause TLB thrashing�
resulting in drastic performance degradation� In block data layout� a large matrix is partitioned
into sub
matrices� Each sub
matrix is a B � B matrix and all elements in the sub
matrix are
mapped onto contiguous memory locations� The blocks are arranged in row
major order�

For standard matrix access patterns� we found an asymptotic lower bound on the number of
TLB misses for any data layout�

�N�

p
PStlb

��

Block data layout achieves this bound� We have shown that block data layout improves TLB
misses by a factor of OB� compared with conventional data layouts� where B is the block size of
the block data layout�

These results were published as �Analysis of Memory Hierarchy Performance of Block Data
Layout� in the International Conference on Parallel Processing ICPP ������ August ����� The
paper can be found in Section ��

We also applied the Block Data Layout to the transitive closure problem� The analysis of this
optimization is very similar to that of the tiled and copied optimization� Since the dependencies
still require updating the entire matrix in each kth loop� the total processor
memory tra�c will be
ON��� Since each tile is in contiguous memory locations and is equal to O�� TLB pages� this only

requires O�� TLB misses for each tile of computation� This gives a total of ON
�

��
� � TLB misses

and a working set of O�� pages� Recall that in the usual implementation� the working set was a
row of the adjacency matrix� This was laid out in contiguous memory locations� so the working set
of pages is O��� In the tiled version� we showed the working set of pages was O���

�

WallacJR
9

WallacJR

The experimental results for the Block Data Layout optimization showed performance increases
in the range of �� to ��� on the Pentium III and approximately ��� on the Alpha�

The work on Block Data Layout for the transitive closure problem was published by Michael
Penner and Viktor K� Prasanna as �Cache Friendly Implementations of Transitive Closure�� in the
Proceedings of International Conference on Parallel Architectures and Compilation Techniques�
September �����

����� Cache	conscious data layout based on Perfect Latin Squares

The theory of Perfect Latin Squares PLS� was originally co
developed by the PI in the context
of parallel memory systems ��� ���� Perfect Latin Squares were used as a mathematical framework
for data distribution among parallel memory banks to minimize memory bank con�icts for array
accesses� In the context of cache memories� we have applied the PLS methodologies to de�ne data
layouts to minimize cache con�icts in a uniprocessor memory hierarchy�

3 60 1 7 24 5 8
2 5 8 3 60 1 74
1 74 2 5 8
3

60 3
6 0 4 7 1 5 8 2

5 8 2 3 6 0 4 7 1
4 7 1 5 8 2 3 6 0
6 0 3 7 1 4 8 2 5
8 2 5 6 0 3 7 1 4
7 1 4 8 2 5 6 0 3

3 60 1 7 24 5 8
2 5 8 3 60 1 74
1 74 2 5 8
3

60 3
6 0 4 7 1 5 8 2

5 8 2 3 6 0 4 7 1
4 7 1 5 8 2 3 6 0
6 0 3 7 1 4 8 2 5
8 2 5 6 0 3 7 1 4
7 1 4 8 2 5 6 0 3

Figure 	� Perfect Latin Square

A Latin square of order N is an N � N square composed with symbols from � to n � � such
that no symbol appears more than once in any row or in any column ���� The rows are numbered
from � to N � l� top to bottom� The columns are also numbered from � to N � l� left to right� The
squares �a� and �b� shown below are examples of Latin squares of order ��

We de�ne a perfect Latin square of order N� as a diagonal Latin square of order N� such
that no symbol appears more than once in any main subsquare� Hence� in a perfect Latin square�
no symbol appears more than once in any row� in any column� in any diagonal or in any main
subsquare�

For an N��N� matrix� a PLS
based mapping can be generated that provides con�ict
free access
to rows� columns� main diagonals� and major sub
squares� If the cache associativity is two or more�
this mapping also generates con�ict
free access to arbitrary sub
squares� Address computation is

�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA

�a� Latin Square

�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA

�b� PLS

Figure �� Latin Squares� In both squares� no symbol appears more than once in a single row or
column� In b� this is also true for diagonals and main subsquares

	

WallacJR
10

also an important issue in any irregular mapping technique� For the PLS based mapping� we have
shown that address computation can be done in constant time�

PLS
based array layouts for a generic matrix access achieved up to ON�� reduction in cache
con�icts for column access and ON� reduction in cache con�icts for any majorN�N subsquare ac

cess� The improvement is in comparison with the standard row
major layout� These improvements
were demonstrated both theoretically and through simulations on the SimpleScalar architecture
simulator�

��� Performance Improvements

We applied many optimization techniques for several problems over the course of our research�
Figures ����������������� are some of our cache optimization results not presented elsewhere in this
paper for transitive closure and graph matching�

0

50

100

150

200

10 30 50 70 90

Graph Size (connectivity %)

E
xe

cu
ti

o
n

 T
im

e
(S

ec
)

Cache Friendly Impl Efficient Impl

(S) Sun UltraSparc II,
16K L1, 2M L2

(P) Pentium III Xeon,
16K L1, 256K L2

0

50

100

150

200

10 30 50 70 90

Graph Size (connectivity %)

E
xe

cu
ti

o
n

 T
im

e
(S

ec
)

Cache Friendly Impl Efficient ImplCache Friendly Impl Efficient Impl

(S) Sun UltraSparc II,
16K L1, 2M L2

(P) Pentium III Xeon,
16K L1, 256K L2

Figure ��� All
Pairs Shortest Path results comparing e�cient implementations with our �cache

friendly� implementation

0

20000000

40000000

60000000

80000000

100000000

TL
B

 m
is

s
es

512 1024

Number of Vertices

0

500

1000

E
xe

cu
ti

on

Ti
m

e
(S

ec
)

1024 1536 2048

Number of Vertices

Compiler's Best Tiling + Copying

0

1000

2000

E
xe

cu
ti

on

Ti
m

e
(S

ec
)

1024 1536 2048

Number of Vertices

Simplescalar Results Pentium III Alpha

Figure ��� The Floyd
Warshall Algorithm� Tiling and Copying Baseline�

�

WallacJR
11

0

200000000

400000000

600000000

800000000

L
ev

el
-1

 c
ac

h
e

m
is

se
s

512 1024

Number of Vertices

0

500

1000

E
x

ec
u

ti
o

n
 T

im
e

(S
ec

)

1024 1536 2048

Number of Vertices

Compiler's Best USC (tiling + blocking)

0

1000

2000

E
x

ec
u

ti
o

n
 T

im
e

(S

ec
)

1024 1536 2048

Number of Vertices

Simplescalar Results Pentium III Alpha

Figure ��� The Floyd
Warshall Algorithm� Tiling with Block Data Layout� Block layout reduces
self
interference misses and TLB misses

Pentium III Alpha

0
100
200
300
400
500
600

Ti
m

e
(S

ec
)

1024 1536 2048

Number of Vertices

0
200
400
600
800

1000
1200

Ti
m

e
(S

e
c)

1024 1536 2048

Number of Vertices

0

500

1000

1500

2000

Ti
m

e
 (S

ec
)

1024 1536 2048

Number of Vertices

MIPS R12000

Baseline Simple USTR Optimized USTRBaseline Simple USTR Optimized USTR

Figure ��� The Optimized USTR Implementation for the Floyd
Warshall Algorithm� The Opti

mized USTR provides approximately �x performance improvement over the best standard Floyd

Warshall implementation

0

1000

2000

3000

4000

5000

6000

T
im

e
(S

ec
)

1024 2048 4096

Number of Vertices

0

2000

4000

6000

8000

10000

12000

T
im

e
(S

ec
)

1024 2048 4096

Number of Vertices

0

2000

4000

6000

8000

10000

12000

T
im

e
(S

ec
)

1024 2048 4096

Number of Vertices

Pentium III Alpha 21264 MIPS R12000

Optimized USTR Recursive ImplementationBaseline

0

1000

2000

3000

4000

5000

6000

T
im

e
(S

ec
)

1024 2048 4096

Number of Vertices

0

2000

4000

6000

8000

10000

12000

T
im

e
(S

ec
)

1024 2048 4096

Number of Vertices

0

2000

4000

6000

8000

10000

12000

T
im

e
(S

ec
)

1024 2048 4096

Number of Vertices

Pentium III Alpha 21264 MIPS R12000

Optimized USTR Recursive ImplementationBaseline Optimized USTR Recursive ImplementationBaseline

Figure ��� Floyd
Warshall Algorithm Optimizations� Replacing in
cache computation with stan

dard Floyd
Warshall code gave ��� improvement over fully recursive implementation

��� Modeling and Simulation of Flexible Memory Architectures

Memory system performance is a key limiting factor in today�s computer systems� Traditional
cache replacement policies are often ine�cient for modern application software� On the temporal
side� data is not always placed in cache according to its temporal locality� In many applications�
large data structures with low temporal reuse compete for cache space� although small data struc

tures with high temporal reuse are desirable� Our work addressed ine�ciencies directly through
application software� On the spatial side� traditional architectures have di�culty dealing with
data references of di�erent spatial localities at the same time� Explicit management can solve this
problem by separating data references into di�erent caches�

The idea of explicit cache management as an architectural feature can be found in several modern

��

WallacJR
12

0

0.5

1

1.5

2

2.5

3

0 10000 20000 30000 40000

N

S
p

ee
d

-u
p

Pentium III UltraSPARC III

0

2

4

6

8

10

0 10000 20000 30000 40000

N

S
p

ee
d

-u
p

Pentium III UltraSPARC III

Best Case SpeedupAverage Case Speedup

Figure ��� Graph Matching Optimizations� a� Average Case� randomly generated graph b� Best
case� graph designed such that maximum matching is found in the �rst stage

processors� The cache in the Itanium architecture is divided into a �temporal structure� and a
�spatial structure� at each level� A bit �eld in each load�store�prefetch instruction speci�es which
structure to use� Intel XScale has a ��K �Data Cache� and a �K �Mini
Data Cache�� A bit �eld in
page table controls which cache to use� Intel StrongARM also has a similar design� UltraSPARC
III Cu has a �K prefetch cache in addition to the regular cache� A prefetch instruction can fetch
data into one or both of the caches� HPL�PD� which is a reference architecture and simulated by
Trimaran�IMPACT compiler infrastructure� has L�� L� cache and a prefetch cache� It also uses a
bit �eld in load�store instructions to control which cache to use� Similar architectures can also be
found in several papers� such as Split Temporal�Spatial Cache and Dual Data Cache� ���� ���

In these architectures� software can control hardware mechanisms of memory hierarchy directly�
We call this explicit cache management� The name is used to distinguish from hardware only
approaches� which are automatic implicit�� We de�ne a generalized split temporal�spatial cache
simulator architecture Figure ���� to support explicit cache management algorithms in this paper�
The idea of explicit cache management� however� is not limited to this type of architectures�

FMA ModelFMA Model

Auto Test
Program

Auto Test
Program

Configuration
File

Configuration
File

Trace
Generator

Trace
Generator

Combined
Result File

Combined
Result F ile

Simulation
Result File

Simulation
Result File

Trace
File

Trace
File

Application
code

Visualization
of results

Memory
Architecture

FMA ModelFMA Model

Auto Test
Program

Auto Test
Program

Configuration
File

Configuration
File

Trace
Generator

Trace
Generator

Combined
Result File

Combined
Result F ile

Simulation
Result File

Simulation
Result File

Trace
File

Trace
File

FMA ModelFMA Model

Auto Test
Program

Auto Test
Program

Configuration
File

Configuration
File

Trace
Generator

Trace
Generator

Combined
Result File

Combined
Result F ile

Simulation
Result File

Simulation
Result File

Trace
File

Trace
File

Application
code

Visualization
of results

Memory
Architecture

Application
code

Visualization
of results

Memory
Architecture

Figure ��� Flexible Memory Architecture FMA� simulator architecture

We developed a uni�ed Flexible Memory Architecture FMA� model Figure ��� that abstracts
a �exible� parameterized memory hierarchy� The Intelligent and Smart memory architectures being
developed by other Data Intensive Systems projects are a subset of the range of advanced memory
architectures the model is capable of representing� The uni�ed FMA model provides a framework

��

WallacJR
13

for e�cient modeling� representation and manipulation of memory hierarchy parameters in an
architecture
independent fashion� The uniqueness of our model and the simulator based on it� lies
in its ability to integrate the requirements of many DIS projects and provide a common platform
for technology transfer�

Processor

Smart MC

Memory

Allows software to
control data movement

Processor

Smart MC

Memory

Allows software to
control data movement

Figure ��� Smart Memory Architectures allow software to control data movement within memory
hierarchy

In our work� we de�ned the generalized split temporal�spatial cache architecture as an abstrac

tion of several advanced cache architectures� Individual problems were analyzed� ine�ciencies in
the memory hierarchy were identi�ed and explicit cache management algorithms were developed�
The problems include the sparse matrix vector multiplication problem from the conjugate gradient
stressmark and problems from data structure and graph applications� According to our timing
model� the average memory access time of the sparse matrix vector multiplication problem can be
reduced by ��� to ��� over a broad range of cache con�gurations Figure �	��

We published a technical report� �Application Directed Explicit Management for Advanced
Cache Architectures�� USC CENG October �����

0

1000000

2000000

3000000

4000000

5000000

6000000

16 64 12
8 16 64 12
8 16 64 12
8 16 64 12
8 16 64 12
8 16 64 12
8

16384 65536 4194304 16384 65536 4194304

LRU RAND

4000 - 2 - 100000

4000 - 4 - 100000

4000 - 8 - 100000

4000 - 16 - 100000

Drop Page Fields Here

Sum of Time

Policy CacheSize LineSize

N

Associtivity

Fill

Figure �	� Flexible Memory Architecture FMA� simulator results for the matrix stressmark

The uni�ed FMA simulator based on the model is available� and the source is contained in the
Appendix of this document� The purpose of the FMA simulator is to provide a �rst
order evaluation
of the e�cacy of algorithmic techniques to improve memory performance of irregular� applications

��

WallacJR
14

on advanced memory architectures� Modeling a �exible� parameterized memory hierarchy provides
a common platform for exploring the advanced memory architecture space without depending on
availability of low
level simulators for the various memory architectures being developed in the DIS
program� Also� from an algorithm designer�s perspective� the simulator provides a rapid estimation
of the relative performance of alternate data layouts� memory hierarchies� etc� without a time

consuming low
level simulation on a speci�c advanced memory architecture simulator� The current
version of the FMA simulator allows the algorithm designer to specify the initial cache con�gurations
and a set of alternate con�gurations Figure ���� The alternate con�gurations are labeled with the
position in the access string where the cache needs to be recon�gured� The parameters that can
be dynamically varied are the line size� cache size� and associativity�

:Init
L1 4096 1 8 RAND
L2 65536 4 8 LRU

:R 100
L2 SetEn 3
L1 LineSize 4
L1 Assoc 2

:MemMapSeg
1000 1020
:AccMapRange
10000

:AccStatSeg
0 1000
1000 5000
:MemStatSeg
0 1000

:Timing
L1 0.2 0 4 2 6 4 8 8 12 16
20 32 36
L2 1 0 20 2 30 4 40 8 60 16
100 32 180

Cache configuration:
L<level> <size> <line size> <associativity>
<repl. policy>

Reconfigure the cache after 100 accesses

Create placement tuples (profile) for data
between 1000 and 1020; for the first 10000
accesses

Record detailed statistics for accesses 0-1000
and 1000-5000; for the first 1000 data elements

Timing Model
L<level> <hit time> <<line size 1> <miss time1>> …

:Init
L1 4096 1 8 RAND
L2 65536 4 8 LRU

:R 100
L2 SetEn 3
L1 LineSize 4
L1 Assoc 2

:MemMapSeg
1000 1020
:AccMapRange
10000

:AccStatSeg
0 1000
1000 5000
:MemStatSeg
0 1000

:Timing
L1 0.2 0 4 2 6 4 8 8 12 16
20 32 36
L2 1 0 20 2 30 4 40 8 60 16
100 32 180

Cache configuration:
L<level> <size> <line size> <associativity>
<repl. policy>

Reconfigure the cache after 100 accesses

Create placement tuples (profile) for data
between 1000 and 1020; for the first 10000
accesses

Record detailed statistics for accesses 0-1000
and 1000-5000; for the first 1000 data elements

Timing Model
L<level> <hit time> <<line size 1> <miss time1>> …

Figure ��� Sample FMA Con�guration File

��� Performance Modeling of Processing�in�Memory �PIM� Architectures

Processing
In
Memory PIM� systems achieve tremendous memory
processor bandwidth by com

bining microprocessors and memory together on the same chip substrate� Commodity microproces

sors have steadily increased the size of their on
board caches� the speed and complexity of today�s
chips requires that instructions and data be immediately ready when requested by the processor�
The PIM architecture attempts the opposite tactic� instead of pushing data to the processor� PIM
moves the processors to the data� Instead of multiple levels of cache and a huge main memory�
PIM places a cache
less� comparatively simple processor directly on each memory chip�

PIM architectures Figure ��� o�er an order of magnitude more processor
memory bandwidth�
compared to traditional processor
memory architectures� without a cache hierarchy and the per

formance implications thereof� We de�ned a �rst
order PIM model� and a parameterized simulator
for various applications on various PIM architecture are available� Applications modeled include
�
D FFT� BiConjugate Gradient� corner turn� matrix multiply� transitive closure� and a molecular
dynamics simulation� We also provided veri�cation of the accuracy of the simulator for several
applications� a sample of which is in Figure ��� Architecture models include the Berkeley VIRAM�
USC
ISI DIVA� and a recursive model of the IBM BlueGene system� ��� ��� ���

Our high
level simulator predicts the performance execution time� of an application over var

ious PIM or application con�gurations� The parameters needed by the simulator characterize the
simulation instance� These include the number of PIM nodes� on
chip and o�
chip bandwidth for

��

WallacJR
15

Memory

Parallel
functional units

(Low) external BW

High internal BW
Memory

Parallel
functional units

(Low) external BW

High internal BW

Figure ��� Processor
In
Memory PIM� Architectures have processors and memory on a single chip�

each node� network topology� and application parameters such as block size� resolution� or prob

lem size� and various replacement and coherence algorithms� The architecture modeled by the
simulator is not restricted to any speci�c PIM implementation due to its completely parametrized
nature� Our simulator is linked to a GUI which allows fast visualization of the e�ects of important
parameters�

Level n+1

Task Function

Function

Parameters

Level n

Returned

Requests

Simulation Results

Figure ��� Recursive System Structure

Our paper� �Performance Modeling and Interpretive Simulation of PIM Architectures and Ap

plications�� was presented at the 	th annual ACM Euro
Par Parallel and Distributed Processing
conference� �����

We continued with the PIM simulation framework and expanded it with support for massively
parallel systems� such as the IBM BlueGene�L� Instead of determining the performance of a sys

tem as composed of discrete nodes at what abstracts to be a single level� we form the nodes into
groups that are as homogeneous as possible� For each group� we create a parameter �le which
de�nes variables such as network topology� latencies in the network� and computational speeds�
The �le also de�nes the behavior of the system at that level� including what sort of computa

tional�communications operations need to be executed by that node or level� The simulator then
runs the parameter �les �recursively�� in that each parameter �le describes a collection of nodes�
each type of which have their own parameter �le and simulation process Figure ����

The performance modeling system can capture a wide range of complex behaviors without
de�ning distinct simulators for each level� and without de�ning away the variations that makes
each level of hierarchy unique� Moreover� we do this with a simulator that functions at a high
enough level so as to produce results quickly� on the order of seconds� and produce results su�cient
for optimization of data placement� network topology� and overall structure of the system�

��

WallacJR
16

1.0

0.8

0.6

0.4

0.2

0.0
1

Number of PIM Nodes

1 2 4 8 16 32

DIVA Results

Overlap 0.8

Figure ��� Comparison between high
level simulated BiConjugate Gradient on DIVA architecture
and DIVA team�s low
level simulation results

Number of BlueGene Boards

22 31 43 61 86 120 168 236 462

Total Time

Data Transfer

Interboard Comm.

Intraboard Comm.

104

105

Figure ��� A sample of execution results for the molecular dynamics application on the BlueGene�L
model

The host can send and receive data in a unicast or multicast fashion� either over a bus or a
high
bandwidth� switched network� The bus is modeled as a single datapath with parameterized
bus width� startup time� and per element transmission time�

The expanded recursive simulator o�ers robust topology and congestion management tools�
Network topology is de�ned between lower
level simulation blocks� Congestion is handled at the
network topology level� The simulator provides various ways of de�ning communication cost� The
most detailed and most time
consuming of the choices is a least
cost path routing which also records
the e�ect of congestion during a time step� The simulator collects all of the communication calls
that are speci�ed in the script to occur during a time interval and then adds them to the network
in an arbitrary fashion� An n� deep queue is assigned the same cost as having to traverse an
unutilized n� hop path� A message will follow the path through the network with the lowest hop
number� as determined by application of Dijkstra�s algorithm� In this setup� the �rst message sent
will have a time proportional to the number of network links traversed� and that number will be
the fastest possible path� The last message in a time step� conversely� may follow an unpredictable
path and have a signi�cantly higher time to completion�

A paper on this work� �Recursive Simulation for High
Level Performance Estimation of Massive
Systems�� was submitted to IPDPS ���� and ICS��� This paper details the �recursive� method of
high
level simulation for Massively Parallel systems�

The source code for the simulator� and both of the papers� are in Sections � and � of this binder�

��

WallacJR
17

��� Final Stressmark Performance Improvements Report

In June ���� we submitted a report of our results to Joe Musmanno� the stressmark suite lead
designer for the Data Intensive Systems program�� The report is in Section � of this binder�
Signi�cant contributions include the Unidirectional Space Time Representation USTR� and a
novel recursive implementation of the Floyd
Warshall algorithm� We found the keys to improve the
performance of the memory system are as follows� increase data reuse� decrease cache con�icts� and
decrease cache pollution� The techniques that we use to achieve these ends can be categorized as
data layout optimizations and data access pattern optimizations� Some of the highlights of our work
include tiling layouts that provide up to ��x improvement for the Floyd
Warshall algorithm� and
the USTR that reduces level
� cache misses by up to ��x based on the Pentium III architecture��

We submitted stressmark results for several novel optimizations of the Floyd
Warshall algorithm
and Dijkstra�s algorithm�

Floyd
Warshall Baseline Approach
Floyd
Warshall Tiling and Copying
Floyd
Warshall Tiling and the Block Data Layout
Floyd
Warshall Simple USTR
Floyd
Warshall Optimized USTR
Floyd
Warshall Recursive USTR
Dijkstra�s Baseline Approach
Dijkstra�s Cache
friendly Implementations

Each of the previous stressmarks were run on the following architectures�

Alpha ����� uniprocessor ���MHz with ���MB main memory� ��K L� data cache� �MB L�
MIPS R����� �� processor ���MHz with ��GB shared memory� ��K L�� 	 MB L�
Pentium III � processor ���MHz with ��K L�� �MB L�
UltraSPARC III � processor ��� MHz SUN Blade ���� with �GB shared memory� ��K L�� 	MB L�

8,414,66332,402,464Data TLB misses

907,142,1662,760,091,657
Data level-2

cache misses

2,410,185,6636,199,690,069
Data level-1

cache misses

N3N*(N+E)*lg(N)Processor-Memory traffic

N3N*(N+E)*lg(N)Computational Complexity

Cache FriendlyEfficient

8,414,66332,402,464Data TLB misses

907,142,1662,760,091,657
Data level-2

cache misses

2,410,185,6636,199,690,069
Data level-1

cache misses

N3N*(N+E)*lg(N)Processor-Memory traffic

N3N*(N+E)*lg(N)Computational Complexity

Cache FriendlyEfficient

Figure ��� Dijkstra�s Algorithm Comparison� Theoretical bounds and SimpleScalar results based
on Pentium III architecture� We observed signi�cant improvements for dense graphs with density
���

�The stressmark suite was developed by the Atlantic Aerospace Electronics Corporation� in conjunction with The
Boeing Company and ERIM International� Inc� The suite is available at http���www�aaec�com�projectweb�dis�

��

WallacJR
18

0.0160.0190.220.018
Data TLB

misses

0.0571.841.851.81
Data Level-2

cache misses

2.761.942.122.72Data Level-1
cache misses

N3/BN3N3N3Processor-
memory traffic

N3N3N3N3Computational
complexity

Simple USTR
Tiling + Block
Data Layout

TiledBaseline

0.0160.0190.220.018
Data TLB

misses

0.0571.841.851.81
Data Level-2

cache misses

2.761.942.122.72Data Level-1
cache misses

N3/BN3N3N3Processor-
memory traffic

N3N3N3N3Computational
complexity

Simple USTR
Tiling + Block
Data Layout

TiledBaseline

Figure ��� Summary of Floyd
Warshall Results� Theoretical bounds and SimpleScalar results based
on Pentium III architecture

In addition to the stressmark results we also presented a simulation tool for the high
level
parameterized performance estimation of PIM architectures� Some of the results of our experiments
on the tool for various architectures were included� The simulator currently has models of the
Berkeley VIRAM and the ISI DIVA architectures� and can evaluate performance for the following
applications�

BiConjugate Gradient
�
D FFT
�
D FFT
Corner Turn
Matrix Multiply
Transitive Closure

We also provided input to Joe Musmanno regarding the evaluation of the stressmark results�
The stressmark results submitted are in Section � of this document�

� Lessons Learned

The speed of modern processors is increasing at a rate of roughly ��� per year while the speed of
memory is increasing at a rate of roughly �� per year� This di�erence is often referred to as the
processor
memory gap� and it causes the latency to memory as seen by the processor to increase
signi�cantly with each passing year� In order to hide this increasing latency� caches have been
designed to take advantage of locality of reference� the fact that once an element is accessed there
is a good chance that it and�or elements near will be accessed in the near future� The cache is
much smaller than main memory and is placed much closer to the processor in terms of latency�

Modern processors are including more levels of cache� each level larger in size and farther from
the processor in terms of latency� Invariably the processor will access data that is not in the
cache and this will result in a cache miss� Cache misses can be categorized into one of three
categories� cold misses� capacity misses� and con�ict misses� A cold miss occurs the �rst time a
data element is accessed� These misses are unavoidable� A capacity miss occurs if the working
set of the application is larger than the cache� These misses can be avoided by either decreasing
the working set or increasing the size of the cache� A con�ict miss occurs if two or more data
elements in the working set map to same place in the cache and the replacement of one results in a
subsequent cache miss when that element is accessed� This type of miss can be avoided in a number

��

WallacJR
19

WallacJR

of ways including improved data access patterns� improved data layout� reducing the working set�
etc�

Two other issues that should be addressed are cache pollution and TLB misses� TLB misses are
similar to cache misses except that they refer to misses in the Translation Look
aside Bu�er� They
can be categorized the same as cache misses and reducing them follows a similar pattern� Cache
pollution is a somewhat di�erent issue� This refers to when a cache line is brought into the cache
and only a small portion of it is used before it is pushed out of the cache� A large amount of cache
pollution will increase the bandwidth requirement of the application� even though the application
is not utilizing more data�

Based on this discussion� the keys to improve the performance of the memory system are as
follows� increase data reuse� decrease cache con�icts� and decrease cache pollution� The techniques
that we use to achieve these ends can be categorized as data layout optimizations and data access
pattern optimizations� In our data layout optimizations we attempt to match the data layout
to an existing data access pattern� For example� we use the Block Data Layout to match the
access pattern of a tiled algorithm� In our data access pattern optimizations� we design both
novel and trivial optimizations to the algorithm to improve the data access pattern� For example�
we implemented both a tiled implementation and a novel recursive implementation of the Floyd

Warshall algorithm to improve the data access pattern� The techniques that we use are algorithmic
in nature� meaning that we assume no control of the hardware or the operating system�

In Dijkstra�s algorithm and Prim�s algorithm� the largest data structure is the graph representa

tion� An optimal representation� with respect to space� would be the adjacency
list representation�
However� this involves pointer chasing when traversing the list� The priority queue has been highly
optimized by various groups over the years� Unfortunately� the update operation is often excluded�
as it is not necessary in such algorithms as sorting� The asymptotically optimal implementation
that considers the update operation is the Fibonacci heap� Unfortunately this implementation
includes large constant factors and did not perform well in our experiments�

Access to source code is obviously required for our optimizations� Changes to the source code are
fairly minor and are most often isolated to the inner loop or to the loop structure of the transitive
closure kernel� In some cases� such as when using the Block Data Layout or in the optimization to
Dijkstra�s algorithm� it may be necessary to change the data structure or data layout for the kernel�
We achieved this by allocating additional space and copying the data into the correct format� Upon
completion the result was copied back to the original format� Since transitive closure is an ON��
complexity algorithm� copying ON�� data required a very small amount of time relative to the
total running time� For any optimization that requires copying� the running time given includes
the time for copying� Possibly the most di�cult task is choosing the appropriate block size for the
tiled implementations� This was done experimentally on one problem size on each machine and
the block size found was used for all problem size� ATLAS provides a technique for automatically
performing this experimentation at compile time� and a similar approach could be developed for
these implementations�

� Technology Transition

��� Impulse project �Univ� of Utah�

We have interacted with the Impulse project with the eventual purpose of integrating our static�dynamic
data layout techniques into the compiler framework being built for Impulse� The Impulse archi

tecture currently supports only a few remapping functions that can be e�ciently implemented in

�	

WallacJR
20

a simple ALU� We have proposed new remapping functions for various applications that can also
be implemented in Impulse�

��� SLIIC and DIVA projects �USC	ISI�

We have interacted with the SLIIC project with a view to collaborate in building their PIM sim

ulator� Our interaction with the DIVA ��� �� project at USC�ISI was ideally to obtain their PIM
simulator for DIVA� We hoped also to gain an understanding of the issues that the DIVA team
faces in their design� so that support can be incorporated into the structure of our parameterized
PIM performance estimation tool� At the conclusion of our project� our high
level simulation was
e�cient and accurate� and the source has been released to the public domain�

��� ATLAS project interactions

ATLAS stands for Automatically Tuned Linear Algebra Software� ATLAS�s purpose is to provide
portably optimal linear algebra software� For all supported operations� ATLAS achieves perfor

mance on par with machine
speci�c tuned libraries ��	��

We have studied block data layout as a data transformation technique used in conjunction with
tiling to improve cache performance� In most cases� datalayout in ATLAS goes along the following
way� After initialization� both matrix A and B are in column major� Before the computation
begins� they copy matrix A into a temporary bu�er pA and the data in pA are in block data layout�
All the following computations use data in pA and the data layout of pA is never changed again�
For each column panel of matrix B� ATLAS copies the data into a temporary bu�er� pB� Data in
pB are in block data layout now�� Then matrix A is multiplied with this column panel� After the
multiply� data in this column panel won�t be needed again� Then ATLAS re�lls the bu�er pB with
the next column panel of B and goes on with the computation� Eventually both matrix A and B

will be completely changed into block data layout�
We have provided a theoretical analysis for the TLB and cache performance of block data layout�

Based on this analysis� we proposed an approach for block size selection that provides a tight range
for optimal block size in using block data layout for dense linear algebra implementations on cache
based machines� The key results of our work are as follows�

The optimal block size Btc� that minimizes the miss cost caused by L� cache and TLB misses
is given as

Btc� �

vuut�L�cMtlb

Pv
! �� !

�Lc���L�

c�

Sc�
�H��Sc�

�H�
��

where Hi is the cost of a hit in the ith level cache� Mtlb is the penalty of a TLB miss� Sci is the
size of the ith level cache� Lci is the line size of the ith level cache� and Pv is the virtual page size�

The optimal block size for minimizing the total miss cost for all cache levels is given by

Btc� � Bopt �
p
Sc� ��

This interval shown in Figure �� can e�ectively reduce the range of block sizes searched by the
ATLAS optimization routines� greatly speeding up ATLAS optimization�

��

WallacJR
21

0

200

400

600

800

1000

1200

1400

1600

8 20 32 44 56

Block Size
T

ot
al

 M
is

s
C

os
t (

m
ill

io
n

cy
cl

es
)

TLB miss cost L1 miss cost L2 miss cost

Search range of ATLAS

Our range

Figure ��� Total miss cost for �
loop tiled matrix multiplication

� Papers Acknowledging this Contract

Xi Wang and Viktor K� Prasanna� �Application Directed Explicit Management for Advanced
Cache Architectures�� Technical Report� Department of Electrical Engineering� University of South

ern California� October �����

Z�K� Baker and Viktor K� Prasanna� �Performance Modeling and Interpretive Simulation of
PIM Architectures and Applications�� Euro
Par ����� August �����

Joon
Sang Park� Michael Penner� and Viktor K� Prasanna� �Optimizing Graph Algorithms
for Improved Cache Performance�� In Proceedings of the International Parallel and Distributed
Processing Symposium� April �����

Joon
Sang Park� Michael Penner� and Viktor K� Prasanna� �Optimizing Graph Algorithms for
Improved Cache Performance�� Technical Report� Department of Electrical Engineering� University
of Southern California� �����

Michael Penner and Viktor K� Prasanna� �Cache Friendly Implementations of Transitive Clo

sure�� In Proceedings of International Conference on Parallel Architectures and Compilation Tech

niques� September �����

Neungsoo Park� Bo Hong� and Viktor K� Prasanna� �Analysis of Memory Hierarchy Performance
of Block Data Layout�� International Conference on Parallel Processing ICPP ������ August �����

Neungsoo Park� Bo Hong� and Viktor K� Prasanna� �Tiling� Block Data Layout� and Memory
Hierarchy Performance� Technical Report� Department of Electrical Engineering� University of
Southern California� November �����

References

��� ADVISOR project website� http���advisor�usc�edu�

��� DIVA project website� http���www�isi�edu�asd�diva��

��

WallacJR
22

��� Impulse project website� http���www�cs�utah�edu�impulse��

��� D� Burger and T� M� Austin� The SimpleScalar Tool Set� Version ���� Technical Report �����
University of Wisconsin
Madison Computer Science Department� June �����

��� Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� Introduction to Algorithms�
MIT Electrical and Computer Science Series� MIT Press� ����� ISBN �
���
�����
	�

��� M� Hall� P� Kogge� J� Koller� P� Diniz� J� Chame� J� Draper� J� LaCoss� J� Granacki� A� Srivas

tava� W� Athas� J� Brockman� V� Freeh� J� Park� and J� Shin� Mapping Irregular Applications
to DIVA� a PIM
based Data
Intensive Architecture� In SC���

��� J�L� Hennessy and D�A� Patterson� Computer Architecture� A Quantitative Approach� Morgan
Kaufmann Publishers� �����

�	� Atlantic Aerospace Electronics Corporation in conjunction with The Boeing Company and
ERIM International Inc� DIS stressmark suite� http���www�aaec�com�projectweb�dis��

��� K� Kim and V� K� Prasanna
Kumar� Perfect latin squares and parallel array access� In
Proceedings of the ��th annual international symposium on Computer architecture� ACM Press�
��	��

���� K� Kim and V� K� Prasanna
Kumar� Latin squares for parallel array access� In IEEE Trans�

actions on Parallel and Distributed Systems� April �����

���� Nihar R� Mahapatra and Balakrishna Venkatrao� The processor
memory bottleneck� Problems
and solutions� ACM Crossroads� �����

���� V� Milutinovic� M� Tomasevic� B� Markovi� and M� Tremblay� A new cache architecture
concept� the split temporal�spatial cache� In Electrotechnical Conference� �����

���� D� Patterson� T� Anderson� N� Cardwell� R� Fromm� K� Keeton� C� Kozyrakis� R� Thomas�
and K� Yelick� A Case for Intelligent DRAM� IRAM� IEEE Micro� April �����

���� M� Prvulovic� D� Marinov� Z� Dimitrijevic� and V� Milutinovic� Split temporal�spatial cache�
A survey and reevaluation of performance� In IEEE TCCA Newsletter� July �����

���� H� Sharangpani� Intel Itanium Processor Microarchitecture Overview� Microprocessor Forum�
October �����

���� William Stallings� Data 	 Computer Communications� Prentice Hall� �th edition� �����

���� IBM BlueGene Project Overview� http���www�research�ibm�com�bluegene��

��	� R� C� Whaley and J� Dongarra� Automatically Tuned Linear Algebra Software ATLAS��
Proceedings of SC
��� November ���	�

��

WallacJR
23

2 Papers Acknowledging this Contract

Xi Wang and Viktor K. Prasanna, "Application Directed Explicit Management for Advanced
Cache Architectures," Technical Report, Department of Electrical Engineering, University of South-
ern California, October 2002.

Z.K. Baker and Viktor K. Prasanna, "Performance Modeling and Interpretive Simulation of
PIM Architectures and Applications," In Proceedings of Euro-Par 2002, August 2002.

Joon-Sang Park, Michael Penner, and Viktor K. Prasanna, "Optimizing Graph Algorithms for
Improved Cache Performance," In Proceedings of the International Parallel and Distributed Pro-
cessing Symposium, April 2002.

Joon-Sang Park, Michael Penner, and Viktor K. Prasanna, "Optimizing Graph Algorithms for
Improved Cache Performance," Technical Report, Department of Electrical Engineering, University
of Southern California, 2002.

Michael Penner and Viktor K. Prasanna, "Cache Friendly Implementations of Transitive Clo-
sure, " In Proceedings of International Conference on Parallel Architectures and Compilation Tech-

niques, September 2001.

Neungsoo Park, Bo Hong, and Viktor K. Prasanna, "Analysis of Memory Hierarchy Per-
formance of Block Data Layout," International Conference on Parallel Processing (ICPP 2002),
August 2002.

Neungsoo Park, Bo Hong, and Viktor K. Prasanna, "Tiling, Block Data Layout, and Memory
Hierarchy Performance", Technical Report, Department of Electrical Engineering, University of
Southern California, November 2001.

WallacJR
24

Application Directed Explicit Management for
 Advanced Cache Architectures*

Xi Wang and Viktor K. Prasanna

University of Southern California, Los Angeles, USA
{ xiw, prasanna} @usc.edu

Technical Report No. 02 - 09

Department of Electrical Engineering – Systems
University of Southern California

Los Angeles, California 90089-2562
213-740-4465

WallacJR
25

 1

Abstract: In this paper, we demonstrate the effectiveness of application directed explicit cache
management. We define the generalized split temporal/spatial cache architecture as an
abstraction of several advanced cache architectures. We analyze individual problems, identify
the inefficiencies in the memory hierarchy and develop explicit cache management algorithms.
In our algorithms, the application software controls hardware mechanisms directly. To
illustrate various optimizations, problems are chosen from regular, sparse, data structure and
graph applications. Analytical performance estimations are derived for several problems.
Simulations show reduced memory traffic and improved average memory access time. For
example, in the sparse matrix vector multiplication problem, the average memory access time
can be reduced by 21% to 62% over a broad range of cache configurations.

1. Introduction

Memory system performance is a key limiting factor in today’s computer systems. Traditional cache replacement
policies are often inefficient for modern application software. On the temporal side, data is not always placed in
cache according to its temporal locality. In many applications, large data structures with low temporal reuse
compete for cache space, although small data structures with high temporal reuse are desirable. Hardware
[1][2][3][5][7][8] and compiler [4][6] based approaches have been proposed. This paper addresses inefficiencies
directly from application software. On the spatial side, traditional architectures have difficulty dealing with data
references of different spatial localities at the same time. Explicit management can solve this problem by
separating data references into different caches.

When the performance of hardware is pushed to the limit, some burden is shifted to the software. EPIC
architectures follow this path. Software based approaches can be further divided into two layers: compiler and
application. Now compilers [4][6] are picking up the burden from hardware. However, compilers also have their
limitations. This motivates us to go one step further to explore the application directed approach.

The idea of explicit cache management as an architectural feature can be found in several modern processors:
The cache in the Itanium architecture [11] is divided into a “temporal structure” and a “spatial structure” at each
level. A bit field in each load/store/prefetch instruction specifies which structure to use. Intel XScale [12] has a
16K “Data Cache” and a 2K “Mini-Data Cache”. A bit field in page table controls which cache to use. Intel
StrongARM also has a similar design. UltraSPARC III Cu [13] has a 2K prefetch cache in addition to the regular
cache. A prefetch instruction can fetch data into one or both of them. HPL/PD [14], which is a reference
architecture and simulated by Trimaran/IMPACT [15] compiler infrastructure, has L1, L2 cache and a prefetch
cache. It also uses a bit field in load/store instructions to control which cache to use. Similar architectures can
also be found in several papers, such as Split Temporal/Spatial Cache [1] and Dual Data Cache [6].

In these architectures, software can control hardware mechanisms of memory hierarchy directly. We call this
explicit cache management. The name is used to distinguish from hardware only approaches, which are
automatic (implicit). We define an abstract architecture, generalized split temporal/spatial cache architecture, to
support explicit cache management algorithms in this paper. The idea of explicit cache management, however, is
not limited to this type of architectures.

In the rest of this paper, we first define the generalized split temporal/spatial cache architecture in Section 2.
Then we analyze individual problems, identify the inefficiencies and develop explicit management algorithms in
Section 3. In our algorithms, application software controls hardware mechanisms directly. Simulation results and
analysis are given in Section 4. More architectural issues are discussed in Section 5.

 * Supported by the US DARPA Data Intensive System Program under contract F33615-99-1-1483 monitored by Wright
Patterson Airforce Base and in part by an equipment grant from Intel Corporation.

WallacJR
26

 2

2. The Generalized Split Temporal/Spatial Cache Architecture

Our work is applicable to the architectures stated earlier in the introduction section. However, as they are not
general-purpose, it is difficult to use them directly in an application directed approach. Architectures of real
processors are often not formally defined. Architectures in literature are often specialized for a hardware
approach. As we would like to make our explicit management algorithms applicable to a family of architectures
and independent of specific architectural features, we define an abstract but realistic architecture: the generalized
split temporal/spatial cache architecture (Figure 1). It is simple, free from implementation details and can cover
many specific architectures.

Temporal
Cache

Processor

Spatial
Caches
Spatial
Caches

Memory Control Mechanism

Figure 1: Generalized split temporal/spatial cache architecture model

Architecture Model: This architecture consists of one temporal cache and one or more spatial caches for data
references. The function of the temporal cache is similar to that of a “regular” cache. It stores data with good
temporal locality. The function of spatial caches is similar to prefetch or stream buffers. They are much smaller
than the temporal cache and are used to handle data with poor temporal locality. They can have built-in prefetch
mechanisms, which will be discussed in our algorithms.

In our architecture model, the temporal cache is large and simple; spatial caches are small but equipped with
advanced prefetch mechanisms. A simple design of the temporal cache will make efficient use of physical
resources for capacity and speed. On the other side, keeping spatial caches small would limit the side effects of
complex designs.

Cache Management: A control mechanism is needed to determine which cache to use on each load/store
operation. It can be either hardware controlled or software controlled. In this paper, software control is used, and
we call this target cache control. For simplicity, we assume that data can be loaded into only one of the caches on
a data reference, and a cache hit occurs only in the specified cache. We also assume write back with write
allocation policy on all caches, and there is coherence protocol like in multi-processor systems.

3. Application Directed Explicit Management

3.1 Objectives of Our Optimization

Given the ability to control the generalized split temporal/spatial cache architecture, our application directed
explicit management have three objectives:

A. Tuning data placement in temporal cache toward optimal replacement: In the application directed
approach, an algorithm designer can predict the future. This prediction can be combined with a history based
replacement policy. Specifically, like optimal replacement policy, if the predicted reuse distance is too large or
there is no reuse at all, we can divert the data reference to a spatial cache. The predictions do not need to be
precise or complete. Any imperfections can still be covered by traditional replacement policy in temporal cache.
[3] gives an upper bound on hit ratio, which would be applicable here, although there are many differences.
Better data placement will translate into reduced memory traffic. This can be measured by the miss rate defined
in Section 3.2.

WallacJR
27

 3

B. Organizing spatial locality for prefetch: The explicit management not only improves data placement in the
temporal cache, but also creates opportunities for optimizations on spatial locality. As temporal locality and
spatial locality are often associated, separating data references according to their temporal locality will often
make the spatial locality in each cache more uniform. If multiple spatial caches are available, we can further
group data references into different spatial caches according to spatial locality. Uniform spatial locality will help
spatial locality based optimizations, such as aggressive prefetch.

C. Overlapping the operations of different caches: Different caches in a split cache architecture can work in
parallel explicitly. We can improve the performance by restructuring programs to maximize the overlapping
between cache operations.

3.2 Performance Metrics

The performance improvement from split cache architectures cannot be evaluated by miss rate directly, as there
are multiple caches with different configurations. We use average memory access time and characteristic miss
rate to measure performance improvements.

3.2.1 Average Memory Access Time

The average memory access time is highly architecture dependent. In our simulation, it is based on a
representative cache and memory system assumption: A one-level cache connected to main memory via a 64-bit
bus. We assume SDRAM with a 5-1-1-1 access cycle is used. On a cache line (block) fetch, the first 8 bytes take
5 memory cycles to complete, and the rest of the data transfers take 1 memory cycle for every 8 bytes. This
results in a timing model, as shown in Table 1. We also assume the cost of a cache hit is 0.2 memory cycles.

Line Size Miss Penalty
16 bytes 6 memory cycles
32 bytes 8 memory cycles
64 bytes 12 memory cycles

128 bytes 20 memory cycles

Table 1: Relation between cache line size and cache miss penalty

The purpose of using average memory access time is to evaluate the effects of our spatial locality optimizations,
where we use spatial caches with different line sizes. The performance numbers will be different on other
systems, but our optimizations will be effective as long as cache miss penalty increases with line size.

3.2.2 Characteristic Miss Rate

We define the characteristics miss rate as a timing model independent performance metric. It is measured on a
reference split cache architecture, in which the cache line size of all caches are the same. This makes the cache
miss penalty comparable. No prefetch techniques are applied. The size of all spatial caches is one cache line,
thus the performance improvement from temporal reuse in spatial caches is not included. Cache misses from all
caches are counted. The characteristic miss rate is defined as:

 characteristic_miss_rate = sum_of_all_cache_misses / total_number_of_accesses

The main purpose of this definition is to make the meaning of the characteristic miss rate similar to the meaning
of the miss rate on a traditional architecture. As prefetch techniques are excluded, it is a measure of the
effectiveness of data placement in the temporal cache, closely related to memory traffic. It can be used in two
ways: compare the performance of an application with or without explicit management, or compare the
performance between a split cache architecture and a traditional architecture. Another advantage of this metric is
that it can often be derived from an algorithm analytically.

WallacJR
28

 4

3.3 Explicit Cache Management Algorithms for Selected Problems

3.3.1 Circular Data Block Access – An Illustrative Example

This problem is an abstraction of a simple but common access pattern. A data block is brought into a processor
sequentially several times during the execution of an algorithm.

Not in Cache In Cache

Point of Access Data is replaced out of cache
before reuse

Figure 2: Circular data block access on traditional architecture

If the data block is larger than the cache, only recently accessed data is available in cache. Figure 2 shows the
situation on a direct mapped cache or a fully associative cache with LRU replacement policy. The performance
is poor in this scenario. There is zero temporal reuse exploited, as data is replaced out of cache before it is
accessed again. Even if the data block is just slightly larger than the cache, all temporal reuse is gone. The cache
behaves like a FIFO buffer. The situation is more complex for caches with limited associativity or random
replacement policy, but the reuse will still decrease quickly as the data block size exceeds the cache size. This
situation can be improved by the following target cache control (Figure 3):

• Temporal Cache <= A region in the data block*
• Spatial Cache <= Rest of the data block

* size_of_the_region = size_ of_ the_temporal_cache

The symbol “<=” is used to indicate that the cache on the left side will handle the data on the right side.

To Spatial Cache

Point of Access

To Temporal Cache

In Temporal Cache From Memory

Figure 3: Circular data block access with explicit management

With explicit management, all data in the temporal cache will be reused. The rest of the data block will be loaded
from memory each time. After the first iteration, characteristic miss rate (as well as the memory traffic) can be
reduced by:

 cache_size/data_size (cache_size<data_size)

data_size is the size of the data block.

For example, when the data block is just a little larger than cache, memory traffic can be reduced by nearly
100%; when the data block is 5 times as large as cache, the memory traffic can be reduced by 20%.

The data placement produced by the above explicit management is equivalent to the data placement produced by
the optimal (MIN) replacement policy. This placement can also be considered as a global resource allocation. It
is interesting to notice that all the data have exactly the same access pattern, but we treat them differently to
improve performance. This type of problems would be difficult to handle by access history based hardware
approaches.

WallacJR
29

 5

Performance can be further improved by interleaving the operation of the temporal cache and the spatial cache,
as shown in Figure 4. Some latency will be hidden if the two caches can work concurrently.

To Temporal Cache

To Spatial Cache

Figure 4: Interleaving the operations of temporal cache and spatial cache

3.3.2 Sparse Matrix Vector Multiplication

The sparse matrix vector multiplication problem is a widely used numerical kernel. It is included in many
benchmark suites for high-end systems, as its performance is a key indication of a system’s ability to handle
irregular numerical problems.

Optimization A

The access patterns of the matrix and the vector are quite different. For the matrix, if the multiplication is
performed just once, there is no temporal reuse. The spatial locality is usually good, depending on the data
structure used. For the vector, the temporal locality is good, but the spatial locality is usually poor. A cache miss
is more costly for a vector reference because of the poor spatial locality. Thus, the vector should have priority for
cache space. However, in traditional architectures, matrix references will compete with vector references and
evict vector data out of cache, due to its larger size. We can also consider this situation as cache pollution.
Performance can be improved by the following target cache control:

• Temporal Cache <= Vector
• Spatial Cache <= Matrix

If the vector is smaller than the cache, the cache miss rates have a simple analytical form. The vector will be
effectively locked in the temporal cache. All cache misses are compulsory. We can choose the data structure for
the matrix such that the accesses are sequential to maximize spatial locality. Suppose there are two variables for
each matrix element (index and data), two variables for each row of the matrix (row index and the number of
nonzero elements in the row) and each data element is 4 bytes. We can calculate the characteristic miss rate as
follows:

spatial_misses = matrix_size / line_size = (F*2+N*2)*4/line_size
temporal_misses = vector_size /line_size = N*4/line_size

characteristic_miss_rate =
)23(_

)32(4
NFsizeline

NF

+⋅
+

vector_size: The size of the vector data in bytes
matrix_size: The size of the matrix data in bytes
line_size: The cache line size in bytes
spatial_misses, temporal_misses: The number of misses in each cache
N: The dimension of the matrix (square matrix)
F: The number of nonzero elements in the matrix

The spatial locality of the matrix reference can be exploited to further improve performance. We can sequentially
prefetch the matrix data into the spatial cache. The performance is limited only by memory bandwidth.

WallacJR
30

 6

Optimization B (Vector smaller than Cache)

In problems such as finding the solutions of linear systems, the multiplication will be repeated many times with
the same matrix. There is also temporal reuse for the matrix data, although the reuse frequency is still lower than
that of the vector. If we consider the references to the matrix data separately, it leads to a “Circular Data Block
Access” problem, which is discussed in Section 3.3.1. If the temporal cache is larger than the vector, we can
incorporate the algorithm of that problem into optimization A. The revised target cache control is:

• Temporal Cache
<= Vector
<= A region in the Matrix*

• Spatial Cache <= Rest of the Matrix

* size_of_the_region = size_of_the_temporal_cache – size_of_the_vector

Optimization C (Vector larger than cache)

When the vector is larger than the cache, it cannot be cached efficiently, even if we direct the matrix data to the
spatial cache. Most of the memory access time can be attributed to the cache misses for the vector. Although it is
difficult to further reduce the number of cache misses, we can reduce the cache miss penalty. As there is little
chance for spatial reuse, we can use a small data transfer unit between the cache and the memory to lower the
cache miss penalty of vector references, by the following target cache control:

• Temporal Cache <= A region in the Vector*
• Spatial Cache A <= Rest of the Vector
• Spatial Cache B <= Matrix

* size_of_the_region = size_of_the_temporal_cache

Spatial cache A has a small data transfer unit, this can be accomplished by using a small line size or partial line
fill. Spatial cache B has a large line size or prefetch mechanism to exploit the spatial locality of the matrix, as
described in optimization A. The temporal cache is still used to store part of the vector data.

3.3.3 Random Tree Search

 Place in
Temporal Cache

The path of
access

Imagine the “ shape”
 of a tree

Figure 5: Binary tree search

We use the random tree search problem as an example of data structure applications. A search operation on a
tree results in a series of data accesses, one access at each level. The access frequency of the nodes in the tree is
not uniform. Nodes closer to the root are much more frequently accessed, due to the exponential growth of the
number of nodes at each level (Figure 5). Thus, nodes closer to the root should have priority for cache space.
However, in traditional cache architectures, lower level nodes will compete with higher level nodes for cache
space. We use the following target cache control to improve data placement:

• Temporal Cache <= Top Tree Nodes, up to the capacity of the Temporal Cache*
• Spatial Cache <= Rest of the Tree Nodes

WallacJR
31

 7

*Select tree nodes level-by-level from the root, until the cache capacity is reached. The last level may not be
fully directed to the temporal cache.

After enough search operations have been performed, the memory system will reach a stable state. All accesses
to the nodes in the temporal cache will be cache hits. All cache misses will come from the accesses to the nodes
directed to the spatial cache. This is a better data placement, as we will show in the simulation section.

We make the following approximations to calculate the analytical estimation of characteristic miss rate: The
temporal cache only holds complete tree levels. An access to a node in the temporal cache will cause two cache
hits, assuming there are one access to the key and one access to one of the pointers. An access to the spatial
cache will cause one cache miss and one cache hit, assuming the first access will cause a cache miss and the
second access will cause a hit due to spatial locality. The derivation is skipped here and the stable state
characteristic miss rate is given below:

characteristic_miss_rate =
))1(21(2

)1(22
−+

−−+
L

cL
L

Lc

c =

� �
)_/_(log2 sizenodesizetemporal (The number of levels that can fit in temporal cache.)

L: The number of levels of the tree

The data layout of this problem also needs to be adjusted for efficient target cache control. The nodes directed to
the temporal cache and the nodes directed to the spatial cache should be stored in different areas.

3.3.4 Structure and Payload Problems

Payload

Structure Structure Temporal Cache

Spatial Cache

Figure 6: Structure and payload problems

In pointer based data structures, data can often be classified into two categories: structure data and payload.
Pointers, indexes and keys can be considered as structure data, and the attached data can be considered as
payload. (Figure 6) Structure data is essential for the operation of a data structure, while payload is the data
manipulated by the data structure.

Structure data tends to be small, has good temporal locality and poor spatial locality. Payload tends to be large,
has good spatial locality and poor temporal locality. For example, suppose the above Random Tree Search
problem appears during the queries of an image database. In this case, an image is attached to each tree node.
The difference between the tree structure and the image data is obvious. Therefore, structure data should have
priority for cache space. In general, we can use the following target cache control for this kind of problems:

• Temporal Cache <= Structure
• Spatial Cache <= Payload

Special data layouts are also needed for this optimization. The structure data and payload data should be stored
separately. As the payload usually has good spatial locality, we can use prefetch to further improve performance.

3.3.5 Dijkstra’s Shortest-Path Algorithm

Dijkstra’s shortest-path algorithm is an effective graph algorithm. It is often used in network routing, CAD and
many other science and engineering applications. It is also a test the MiBench [18] benchmark suite. Usually two

WallacJR
32

 8

major data structures are used in this algorithm, the graph data and the priority queue. The graph data stores
information about graph edges and their costs. The priority queue is used to extract the lowest-cost node
efficiently.

For the graph data, if we run the algorithm from a single source, there is no temporal reuse. There is some spatial
locality, however, as all the edges going out from a node will be accessed consecutively during a relax operation.
For the priority queue, there is temporal reuse, but the spatial locality is poor. Therefore, we can use the temporal
cache to store the priority queue and divert the graph data to the spatial cache:

• Temporal Cache <= Priority queue
• Spatial Cache <= Graph data

This problem is a good example of straightforward explicit management optimizations for relatively complex
problems. There are many opportunities for the optimizations of the priority queue, which are left for future
study.

4. Simulation Results

4.1 Simulator

We developed a trace simulator to simulate the generalized split cache architecture. The simulated architecture
consists of one temporal cache and multiple spatial caches. The cache size, line size, replacement policy and
associativity of all caches can be configured to simulate various architectures. For simplicity, there is no prefetch
mechanism included in the simulator. We use spatial caches with different line sizes to exploit spatial locality.
Both miss rate and average memory access time are measured by this simulator. The timing model described in
Section 3.2 is used to calculate the total memory cycles. The average memory access time is the total number of
memory cycles divided by the number of references.

The trace is generated by inserting patches into program source code directly. To include explicit management
information, an integer pair is generated for each memory access. One integer indicates the address. The other
integer indicates which cache to use and if the access is a read or a write. This resembles the instruction
embedded method (see Section 5).

4.2 Results

4.2.1 Sparse Matrix Vector Multiplication

Figure 7 shows the characteristic miss rate (defined in Section 3.2). The Optimization A in Section 3.3.2 is used.
The sparse matrix is generated by inserting nonzero elements randomly. Its data structure groups the index and
the data element together, so the access to the matrix is sequential.

We can see the performance improvement is connected to the relative size of the vector and the temporal cache.
Maximum characteristic miss rate reduction is 52% for both N=4000 and N=8000. Each data element is 4 bytes
in this simulation, thus maximum reductions occur when the size of the vector is close to the size of the temporal
cache. For other cache sizes, there are noticeable improvements when the size of the temporal cache falls
between 1/4 to 2 times of the size of the vector. Other simulations results show the number of nonzero data
elements in the matrix does not have a significant influence.

WallacJR
33

 9

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

0 .4

0 .4 5

2K 16K 48 K 3 2K

C ha rac te ris tic M iss R a te

S iz e o f T em po ra l C ach e

N =40 0 0, E xp lic it M a na gem e nt O FF
N =40 0 0, E xp lic it M a na gem e nt O N

N =80 0 0, E xp lic it M a na gem e nt O N
N =80 0 0, E xp lic it M a na gem e nt O FF

N: Dimension of matrix (square matrix)
Nonzero data elements in matrix: 160,000
Spatial Cache: 32-byte cache line, the cache size is 1 line
Temporal Cache: 32-byte cache line, 4-way associative, LRU replacement policy

Figure 7: Characteristic miss rate of sparse matrix vector multiplication

Figure 8 and Figure 9 show the average memory access time of this problem. Figure 8 focuses on the relation
between performance and cache size. Figure 9 focuses on the relation between performance and line size. The
optimization C in Section 3.3.2 is used in this simulation. There are now two spatial caches, one for the vector
and the other for the matrix. Different line sizes are used to exploit spatial locality. We can see the performance
is further improved. This improvement is also observed over a broader range of cache sizes than the
improvement in Figure 7.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1K 2K 4K 8K 16K 32K 128K 256K

Explicit Management OFF

Size of Temporal Cache

Average Access Time (Cycles)
Explicit Management ON

Matrix size: 4,000*4,000
Nonzero data elements in matrix: 160,000
Spatial Cache A: 16-byte cache line, the cache size is 1 line
Spatial Cache B: 256-byte cache line, the cache size is 1 line
Temporal Cache: 64-byte cache line, 4-way associative, LRU replacement policy

Figure 8: Average memory access time of sparse matrix vector multiplication

WallacJR
34

 10

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128

2048 8192 16384 32768 262144
Size of Temporal Cache

62% 46% 21%

Line Size of Temporal Cache

Explicit Managem ent OFF Average Access Tim e (Cycles)
Explicit Managem ent ON

21% 47%

Parameters same as Figure 8
Reduction in average access time marked in percentage

Figure 9: Average memory access time of sparse matrix vector multiplication

The performance improvement in Figure 8 and Figure 9 comes from three different sources. The contribution of
each source is determined by the relative size of the vector and the temporal cache. This is explained in Table 2.

A. Better data placement in temporal cache. Memory traffic is also reduced.
B. Reduced cache miss penalty of vector references by using a small line size on the spatial cache A. Memory

traffic is also reduced.
C. Improved memory bandwidth of matrix references by using a large line size on the spatial cache B.

Performance Contributors Relative Size
A B C

Comments

Cache << Vector Some Main Some Cache misses from vector references dominate memory access
time.

Cache ~ Vector

Main

Some

Some

Explicit management works efficiently on data placement, with
explicit management, vector is locked into cache, without explicit
management, there is severe pollution from matrix data.

Cache >> Vector

Little

None

Main

There is enough space for both vector and matrix. Data
placement does not have a significant influence. B is not
applicable, as the whole vector can be locked in temporal cache.

Table 2: Analysis of different sources of performance improvement

4.2.2 Binary Tree Search

Figure 10 shows the characteristic miss rate for the binary tree search problem related to the size of the temporal
cache, including the simulation result and the analytical performance estimation described in Section 3.3.3. For
the simulation result, we can see there are similar reductions across a wide range of temporal cache sizes. When
the cache is larger than the tree (The tree is 192K bytes), there is no improvement, as the complete tree can fit
into the temporal cache. For the analytical performance estimation, we can see it matches the simulation result.
The difference is caused by approximations introduced during the derivation.

WallacJR
35

 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Simulation, Explicit Management OFF
Simulation, Explicit Management ON
Analytical Performance Estimation

1K 4K 16K 32K 64K 128K 256K
Size of Temporal Cache

Characteristic Miss Rate

25%

25%

27% 29%
30%

21%
0%

Tree: 14-level full binary search tree
Node size: 12 bytes
Tree size: 192K bytes (number_of_nodes * node_size)
Number of search operation: 4 * number_of_tree_nodes
Temporal Cache: 64-byte cache line, 4-way associative, LRU replacement policy
Spatial Cache: 64-byte cache line, the cache size is 1 line
Reduction in characteristic miss rate marked in percentage (between simulation results)

Figure 10: Characteristic miss rate of binary tree search

Figure 11 shows the average access time for the problem. The line size of the spatial cache is now set to 16 bytes
to reduce cache miss penalty. The performance is further improved when the temporal cache has a medium to
large line size.

0

1

2

3

4

5

6

16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128

1K 4K 32K 128K

E xp lic it M an ag em en t O F F
E xp lic it M an ag em en t O N

30 % 53 % 5 2% 5 2%

Line S ize of Tem p ora l C a che

S ize o f Tem po ral C ach e

A v erag e A cc es s T im e (C ycles)

Spatial Cache: 64-byte cache line, the cache size is 1 line
Other parameters same as Figure 10
Reduction in average memory access time marked in percentage

Figure 11: Average memory access time of binary tree search

WallacJR
36

 12

4.2.3 Dijkstra’s Algorithm

Figure 12 shows the characteristic miss rate for the problem. We can see the effect of explicit management on
this problem is similar to the sparse matrix vector multiplication problem. The peak miss rate reduction is 42%.
This occurs when the size of the temporal cache is 32K. This result also suggests that a smaller cache with
explicit management can behave like a larger cache without explicit management.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

1K 2K 4K 8K 16K 32K 64K 128K

Expl icit Management OFF
Expl icit Management ON

Characteristic Miss Rate

Size of Temporal Cache
Number of nodes: 2,000
Number of edges: 200,000
Temporal Cache: 64-byte cache line, 4-way associative, LRU replacement policy
Spatial Cache: 64-byte cache line, the cache size is 1 line

Figure 12: Character istic miss rate of Dijkstra’s algor ithm

5. Discussion

The explicit cache management is a rather new and broad area. We focused on explicit management algorithms
in previous sections. In this section, we will briefly address some architectural issues.

Multilevel Cache: The Generalized Split Cache Architecture we defined before can be extended to multilevel
cache architectures. There are two available methods:

We can simply replace the single level temporal cache with a multilevel traditional cache. This is the scheme
used by HPL-PD [14]. The algorithms for single level cache can be used directly.

The split cache can also be built at each level recursively. This is the scheme used by Itanium [11]. We can get
better performance by applying different optimizations at different levels. For example, for the sparse matrix
vector multiplication problem, we can use L1 cache for vector data only and L2 cache for both vector and matrix
data (see Section 3.3.2).

Implementation of Target Cache Control: In split cache architectures, on a data reference, software needs to
pass some extra information to hardware to indicate which cache to use. There are two available
implementations:

Instruction Embedded Method: We can add a bit field to each load/store instruction. Both Itanium [11] and
HPL-PD [14] use this method. It is inherently a compile time solution, as compiler will generate all the machine

WallacJR
37

 13

code. It is not very flexible for run-time adaptations, as “if” may be need. The amount of embedded information
is limited.

Page Table Embedded Method: The page table is another good place to embed control information. This
method is used by Intel XScale [12]. It is inherently a run time operating system solution, as the OS is in charge
of the page table. Although it may not be as convenient as the Instruction Embedded Method, there are several
advantages: A large amount of information can be included in the page table, which is based on main memory
and cached by TLB. We may need a large space for prefetch information. The instruction set architecture is not
affected by this method, so it can be easily incorporated into existing architectures. Run-time adaptations can
also be more efficient.

Cache Line Size in Split Cache Architectures: There are at least two reasons for organizing cache memory
into cache lines. One is efficiency: The amount of tag memory and parallel search circuit is proportional to the
number of cache lines, the larger cache line, the lower hardware cost. The other benefit is prefetch. Cache line
fetch can be considered as an implicit prefetch, which can hide memory latency and increase memory throughput.
The cache line size is always a tradeoff. Although a cache with flexible line size can improve performance, this
may not be very practical, as the hardware complexity would be high, and proportional to the smallest possible
line size.

The situation is much better in split cache architectures, as duties are distributed into temporal and spatial caches.
We suggest a relatively large fixed line size for the temporal cache for efficiency. Data with poor spatial locality
can be handled by spatial caches. A possible design is to employ multiple spatial caches with different (and fixed)
line sizes. This way, no special cache design is needed. In the sparse matrix vector multiplication problem, this
can provide very good performance.

Resolving Cache Conflict: The explicit management on split cache architectures can also be used to resolve
cache conflict. We can simply leave only one of the conflicting references to the temporal cache and divert all
other references to spatial caches. The advantage is that data layout and program structure do not need to be
changed.

Better Performance Prediction: In our problems, we found it is much easier to estimate performance after the
explicit management is applied. The characteristic miss rate of several problems can be expressed in analytical
forms. Due to better data placement control from explicit management, we can not only improve performance,
but also make the memory access time more predictable. This would be helpful for real time applications.

Relation to Hardware and Compiler Based Approaches: Compared with hardware and compiler approaches,
application directed approach is more precise. It also requires much less hardware support than hardware
approaches. The advantage of hardware and compiler approaches is that they are automatic. Application directed
approach works best for performance sensitive kernel applications. The three approaches can also be used
together.

Our approach is also a good reference for compiler and hardware optimizations, as it can reveal the mechanism
of performance improvement. Our explicit management algorithms are directly applicable to compiler
optimizations. They are also good references for hardware optimizations.

WallacJR
38

 14

6. Related Work

Architecture Definitions: Various architectures are defined in [1][4][6][7]. In these architectures, there are
multiple caches for data with different temporal and spatial localities. Although there are many differences
among them, the ideas are similar.

Hardware Adaptive Approaches: [1][2][3][5][7][8] can be classified as hardware adaptive approaches. In most
of these approaches, the control decision is based on access history. Static control based on profiling information
is also used in some papers.

Compiler Driven Approaches: [4][6] are compiler driven approaches, where the compiler analyzes source code
and generates control information. They are focused on regular numerical codes.

The Address Mapping Approach: [9] is a interesting approach, in which applications control the
virtual/physical address mapping to get better data placement.

Software Prefetch: Software prefetch techniques such as [16] also have some similarities to our approach, in
that they are also combined hardware and software efforts. They are different, however, as our approach
addresses data placement and memory traffic besides access latency.

7. Conclusion

The performance improvements in our problems are attractive. The explicit management algorithms are
straightforward. The underlying architecture, the Generalized Split Temporal/Spatial Cache architecture, is
realistic. All of these factors make us think our approach is an efficient next step to improve memory system
performance.

WallacJR
39

 15

8. References

[1] A new cache architecture concept: the split temporal/spatial cache, Milutinovic, V. Tomasevic, M. Markovi,
B. Tremblay, M., Electrotechnical Conference, 1996

[2] Split Temporal/Spatial Cache: A Survey and Reevaluation of Performance, M. Prvulovic D. Marinov Z.
Dimitrijevic and V. Milutinovic, IEEE TCCA Newsletter, July 1999

[3] Run-Time Cache Bypassing, T. L. Johnson, D. A. Connors, M. C. Merten, and W. W. Hwu, IEEE
Transactions on Computers, Vol. 48, No. 12, December 1999, pp. 1338-1354

[4] A Locality Sensitive Multi-Module Cache with Explicit Management, Jesús Sánchez and Antonio González,
Proc. of the ACM International Conference on Supercomputing (ICS-99), Rhodes (Greece)

[5] A modified approach to data cache management, G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun,
Proceedings of the 28th Annual International Symposium on Microarchitecture, December 1995

[6] Software Management of Selective and Dual Data Caches, Sanchez, F. J., Gonzalez, A., Valero, M., IEEE
TCCA NEWSLETTERS, March 97

[7] A Data Cache with Multiple Caching Strategies Tuned to Different Types of Locality, Gonzalez, A., Aliagas,
C. and Valero, M., Proceedings of the International Conference on Supercomputing (ICS’95), Barcelona, Spain

[8] Annotated Memory References: A Mechanism for Informed Cache Management, A. R. Lebeck, D. R.
Raymond, C. Yang, M. S. Thottethodi, Euro-Par '99

[9] Cache-Conscious Structure Layout, Trishul M. Chilimbi, Mark D. Hill, and James R. Larus, Programming
Language Design and Implementation (PLDI), 1999

[10] (Removed for blind review)

[11] Intel® Itanium™ Architecture Software Developer's Manual Vol. 1~3 rev. 2.0, Intel
http://developer.intel.com

[12] Intel® XScale™ Core Developer’s Manual, Intel, http://developer.intel.com

[13] UltraSPARC III Cu User’s Manual, SUN

[14] HPL-PD architecture specification: Version 1.1,Vinod Kathail, Michael S. Schlansker, and B. Ramakrishna
Rau, Tech. Rep. HPL-93-80(R.1), Hewlett Packard Company, Feb. 2000

[15] Trimaran website, http://trimaran.org

[16] Compiler-Based Prefetching for Recursive Data Structures, C.-K. Luk and T. C. Mowry, Proceedings of the
7th International Conference on Architectural Support for Programming Languages and Operating Systems,
1996.

[17] DIS Stressmark Suite Version 1.0, Titan Systems Corporation Atlantic Aerospace Division,
http://www.aaec.com/projectweb/dis, 2000

[18] MiBench: A Free, Commercially Representative Embedded Benchmark Suite, Matthew R. Guthaus, Jeffrey
S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, Richard B. Brown, IEEE 4th Annual Workshop on
Workload Characterization, 2001

WallacJR
40

Performance Modeling

and Interpretive Simulation

of PIM Architectures and Applications

Zachary K. Baker and Viktor K. Prasanna

University of Southern California, Los Angeles, CA USA
zbaker@halcyon.usc.edu, prasanna@ganges.usc.edu

http://advisor.usc.edu

Abstract. Processing-in-Memory systems that combine processing power
and system memory chips present unique algorithmic challenges in the
search for optimal system efficiency. This paper presents a tool which al-
lows algorithm designers to quickly understand the performance of their
application on a parameterized, highly configurable PIM system model.
This tool is not a cycle-accurate simulator, which can take days to run,
but a fast and flexible performance estimation tool. Some of the results
from our performance analysis of 2-D FFT and biConjugate gradient are
shown, and possible ways of using the tool to improve the effectiveness
of PIM applications and architectures are given.

1 Introduction

The von Neumann bottleneck is a central problem in computer architecture to-
day. Instructions and data must enter the processing core before execution can
proceed, but memory and data bus speeds are many times slower than the data
requirements of the processor. Processing-In-Memory (PIM) systems propose to
solve this problem by achieving tremendous memory-processor bandwidth by
combining processors and memory together on the same chip substrate. Notre
Dame, USC ISI, Berkeley, IBM, and others are developing PIM systems and
have presented papers demonstrating the performance and optimization of sev-
eral benchmarks on their architectures. While excellent for design verification,
the proprietary nature and the time required to run their simulators are the
biggest detractors of their tools for application optimization. A cycle-accurate,
architecture-specific simulator, requiring several hours to run, is not suitable for
iterative development or experiments on novel ideas. We provide a simulator
which will allow faster development cycles and a better understanding of how
an application will port to other PIM architectures [4, 7]. For more details and
further results, see [2].
1 Supported by the US DARPA Data Intensive Systems Program under contract

F33615-99-1-1483 monitored by Wright Patterson Airforce Base and in part by an
equipment grant from Intel Corporation. The PIM Simulator is available for down-
load at http://advisor.usc.edu

WallacJR
41

2 The Simulator
The simulator is a wrapper around a set of models. It is written in Perl, because
the language’s powerful run-time interpreter allows us to easily define complex
models. The simulator is modular; external libraries, visualization routines, or
other simulators can be added as needed. The simulator is composed of various
interacting components. The most important component is the data flow model,
which keeps track of the application data as it flows through the host and the
PIM nodes. We assume a host with a separate, large memory. Note that as the
PIM nodes make up the main memory of the host system in some PIM imple-
mentations. The host can send and receive data in a unicast or multicast fashion,
either over a bus or a non-contending, high-bandwidth, switched network. The
bus is modeled as a single datapath with parameterized bus width, startup time
and per element transmission time. Transmissions over the network are assumed
to be scheduled by the application to handle potential collisions. The switched
network is also modeled with the same parameters but with collisions defined as
whenever any given node attempts to communicate with more than one other
node(or host), except where multicast is allowed. Again, the application is re-
sponsible for managing the scheduling of data transmission. Communication can
be modeled as a stream or as packets.

Computation time can be modeled at an algorithmic level, e.g. n lg(n) based
on application parameters, or in terms of basic arithmetic operations. The ac-
curacy of the computation time is dependent entirely on the application model
used. We assume that the simulator will be commonly used to model kernel
operations such as benchmarks and stressmarks, where the computation is well
understood, and can be distilled into a few expressions. This assumption allows
us to avoid the more complex issues of the PIM processor design and focus more
on the interactions of the system as a whole.

3 Performance Results

3.1 Conjugate Gradient Results

Figure 1 shows the overall speedup of the biConjugate Gradient stressmark with
respect to the number of active PIM elements. It compares results produced by
our tool using a DIVA parameterized architecture to the cycle-accurate simu-
lation results in [4]. Time is normalized to a simulator standard. The label of
our results, “Overlap 0.8”, denotes that 80% of the data transfer time is hid-
den underneath the computation time, via prefetching or other latency hiding
techniques. The concept of overlap is discussed later in this paper.

BiConjugate Gradient is a DARPA DIS stressmark [1]. It is used in matrix
arithmetic to find the solution of y = Ax, given y and A. The complex matrices
in question tend to be sparse, which makes the representation and manipulation
of data significantly different than in regular data layout of FFT. The applica-
tion model uses a compressed sparse row matrix representation of A, and load
balances based on the number of elements filling a row. This assumes that the
number of rows is significantly higher than the number of processors. All PIM
nodes are sent the vector y and can thus execute on their sparse elements inde-
pendently of the other PIM nodes.

WallacJR
42

� � �

��� �

��� �

��� �

��� �

��� � �

	�
�������������� ��	�������
� � � � � � �

!#" $&%('*) + , - . +
/#0) 1 - 2�3���� �

Fig. 1. Speedup from one processor to n proces-
sors with DIVA model

Figure 2 is a graph
of the simulator output
for a BiCG application
with parameters similar to
that of the DIVA architec-
ture with a parallel, non-
contending network model,
application parameters of
n(row/column size of the
matrix)=14000 and nz(non
zero elements)=14 elements/row.
Figure 2(left) shows the
PIM-to-PIM transfer cost,

Host-to-PIM transfer costs, computation time, and total execution time(total)
as the number of PIM nodes increases under a DIVA model. The complete sim-
ulation required 0.21 seconds of user time on a Sun Ultra250 with 1024 MB of
memory.

The graph shows that the computation time decreases linearly with the num-
ber of PIM nodes, and the data transfer time increases non-linearly. We see in
the graph that PIM-to-PIM transfer time is constant– this is because the number
of PIM nodes in the system does not dramatically affect the amount of data (a
vector of size n in each iteration) sent by the BiCG model. Host-to-PIM commu-
nication increases logarithmically with number of PIM; the model is dependent
mostly on initial setup of the matrices and final collection of the solution vectors.
The Host-to-PIM communication increases toward the end as the communica-
tions setup time for each PIM becomes non-negligible compared to the total
data transferred. Figure 2(right) shows a rescaled version of the total execution
time for the same parameters. Here, the optimal number of PIM under the BiCG
model and architectural parameters is clear– this particular application seems
suited to a machine of 64 to 128 PIM nodes most optimally in this architecture
model.
4 5 6

4 5 7

4 5 8

4 5 9

4 5 :

4 5 ; <
=>@?(ACB#D@E&FHGJI KL=ME@N@B&O

4 P Q RTS 4 UVR WYX U W

Z [\C] ^ _ ` _ a [b
c d eCf _ [f c d e
g [h _ f _ [f c d e

i [_ ` j

k l m

n o k l p

q o k l p

r o k l p

s o k l p

k l p t
u�v@w�xCyHz*{@|M}~ ��uJ{@�*y@�

k n q r�� k s�r ��� s �

� � � � �

Fig. 2. BiConjugate Gradient Results; unit-less timings for various amounts of PIM
nodes. (left: all results, right: total execution time only)

3.2 FFT

Another stressmark modeled is the 2-D FFT. Figure 3 shows execution time
versus the number of FFT points for the Berkeley VIRAM architecture, com-
paring our results against their published simulation results [8]. This simulation,

WallacJR
43

for all points, required 0.22 seconds of user time. The 2-D FFT is composed of
a one dimensional FFT, a matrix transpose or ‘corner-turn’, and another FFT,
preceded and followed by heavy communication with the host for setup and
cleanup. Corner turn, which can be run independently of the FFT application,
is a DARPA DIS stressmark [1]. Figure 3 shows the VIRAM speedup results
against various overlap factors– a measure of how much of the data exchange
can overlap with actual operations on the data. Prefetching and prediction are
highly architecture dependent; thus the simulator provides a parameter for the
user to specify the magnitude of these effects.

���

�

�

�

�

� �

�	��
������������� �����������
� ��� ��� � �!� � � " ��#$��" #��

%'& (*),+-(/.�0 1�2 3 0
4'5 .�6 2 7�89"�: �
4'5 .�6 2 7�8�"�: �
4'5 .�6 2 7�8�"�: �

Fig. 3. Speedup versus number of FFT Points for
various fetch overlaps, normalized to 128 points.

In the graph we see that
the VIRAM results match
most closely with an over-
lap of 0.9; that is, virtually
all of the data transfer is
hidden by overlapping with
the computation time. This
‘overlap’ method is similar
to the ‘clock multiplier fac-
tor N’ used by Rsim in that
it depends on the applica-
tion and the system and
cannot to determined with-
out experimentation [5].

Inspecting the VIRAM
architecture documentation,

we see that it includes a vector pipeline explicitly to hide the DRAM latency
[6]. Thus our simulation results suggest the objective of the design has been
achieved.

; < =

; < >

; < ?

; < @

; < A

; < B C

D�E,FHGJILK,M,N�O�P QRD�M,S'I,T
; U ; VWV U X Y V

Z![\/] ^ _ ` _ a [b
c�d e*f _ [f c�d e

g [_ ` h

i�[j _ f _ [f c�d e

k l m

k l n

k l o

k l p

k l q

k l r s
t�u,v	wJxLy'z,{�|�} ~Rt�z,�'x,�

k � k ��� � � � �

�!� �/� � � � � � � �
��� �J� � � � ��� �

� � � � �

��� � � � � � � ��� �

Fig. 4. 2-D FFT Results (left: Small memory size, right: Small problem size)

The simulator can be used to understand the performance of a PIM system
under varying application parameters, and the architecture’s effect on optimiz-
ing those parameters. A graph of the simulator output in Figure 4(left) and
4(right) show a generic PIM system interconnected by a single wide bus. The

WallacJR
44

FFT problem size is 220 points, and the memory size of any individual node is
256K. The change in slope in Figure 4(left) occurs because the problem fits com-
pletely within the PIM memory after the number of nodes exceeds four. Until
the problem size is below the node memory capacity, bandwidth is occupied by
swapping blocks back and forth between the node and the host memory. Looking
toward increasing numbers of PIM, we see that the total time has a minimum
at 128, and then slowly starts to increase. Thus it could be concluded that an
optimal amount of PIM nodes for an FFT of size 220 is 128.

4 Conclusions

In this paper we have presented a tool for high-level modeling of Processing-In-
Memory systems and its uses in optimization and evaluation of algorithms and
architectures. We have focused on the use of the tool for algorithm optimization,
and in the process have given validation of the simulator’s models of DIVA and
VIRAM. We have given a sketch of the hardware abstraction, and some of the
modeling choices made to provide an easier-to-use system. We have shown some
of the application space we have modeled, and presented validation for those
models against simulation data from real systems, namely DIVA from USC ISI
and VIRAM from Berkeley.

This work is part of the Algorithms for Data IntensiVe Applications on In-
telligent and Smart MemORies (ADVISOR) Project at USC [3]. In this project
we focus on developing algorithmic design techniques for mapping applications
to architectures. Through this we understand and create a framework for appli-
cation developers to exploit features of advanced architectures to achieve high
performance.

References

1. Titan Systems Corporation Atlantic Aerospace Division. DIS Stressmark Suite.
http://www.aaec.com/projectweb/dis/, 2000.

2. Z. Baker and V.K. Prasanna. Technical report: Performance Modeling and Inter-
pretive Simulation of PIM Architectures and Applications. In preparation.

3. V.K. Prasanna et al. ADVISOR project website. http://advisor.usc.edu.
4. M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki,

A. Srivastava, W. Athas, J. Brockman, V. Freeh, J. Park, and J. Shin. Mapping
Irregular Applications to DIVA, a PIM-based Data-Intensive Architecture. In SC99.

5. C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve. Rsim: Simulating Shared-
Memory Muliprocessors with ILP Processors, Feb 2002.

6. Christoforos Kozyrakis. A Media-Enhanced Vector Architecture for Embedded
Memory Systems Technical Report UCB//CSD-99- 1059, July 1999.

7. D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A Case for Intelligent RAM: IRAM, 1997.

8. Randi Thomas. An Architectural Performance Study of the Fast Fourier Transform
on Vector IRAM. Master’s thesis, University of California, Berkeley, 2000.

WallacJR
45

 1

Optimizing Graph Algorithms for Improved Cache Performance*

Joon-Sang Park, Michael Penner, and Viktor K Prasanna
University of Southern California

{jsp, mipenner, prasanna} @usc.edu
http://advisor.usc.edu

Abstract
Tiling has long been used to improve cache performance. Recursion has recently been used as a
cache-oblivious method of improving cache performance. Both of these techniques are normally
applied to dense linear algebra problems. We develop new implementations by means of these two
techniques for the fundamental irregular problem of Transitive Closure, namely the Floyd-Warshall
Algorithm, and prove their optimality with respect to processor-memory traffic. Using these
implementations we show up to 10x improvement in execution time. In this context we also compare
the performance of a nonlinear array layout with that of the block data layout. We also address
Dijkstra's algorithm for the single-source shortest-path problem and Prim's algorithm for Minimum
Spanning Trees, for which neither tiling nor recursion can be directly applied. For these algorithms,
we demonstrate up to a 2x improvement by using a cache friendly graph representation. We also
demonstrate improvements in cache performance for two cache friendly implementations of the heap
compared with the asymptotically optimal implementation, with respect to time complexity.
Experimental results are shown for the Pentium III, UltraSPARC III, Alpha 21264, and MIPS R12000
machines using problem sizes between 1024 and 4096 vertices. We demonstrate improved cache
performance using the Simplescalar simulator.

1. Introduction

The topic of cache performance has been well studied in recent years. It has been clearly shown

that the amount of processor-memory traffic is the bottleneck for achieving high performance in many
applications [5][25]. While cache performance has been well studied, much of the focus has been on
dense linear algebra problems, such as matrix multiplication and FFT [5][12][20][30]. All of these
problems possess very regular access patterns that are known at compile time. In this paper, we take a
different approach to this topic by focusing on some fundamental irregular graph problems.

Optimizing cache performance to achieve better overall performance is a difficult problem. Modern
microprocessors are including deeper and deeper memory hierarchies to hide the cost of cache misses.
The performance of these deep memory hierarchies has been shown to differ significantly from
predictions based on a single level of cache [25]. Different miss penalties for each level of the
memory hierarchy as well as the TLB also play an important role in the effectiveness of cache-friendly
optimizations. These penalties vary among processors and cause large variations in execution time.

The area of graph problems are fundamental in a wide variety of fields, most notably network
routing, distributed computing, and computer aided circuit design. Graph problems, as irregular, pose
unique challenges to improving cache performance, challenges that often cannot be handled using
standard cache-friendly optimizations [9]. The focus of this research is to develop methods of meeting
these challenges.

* Supported by the US DARPA Data Intensive Systems Program under contract F33615-99-1-1483 monitored by Wright Patterson
Airforce Base and in part by an equipment grant from Intel Corporation.

WallacJR
46

 2

In this paper we present a number of optimizations to the Floyd-Warshall algorithm, Dijkstra’s
algorithm, and Prim’s algorithm. For the Floyd-Warshall algorithm we present a recursive
implementation that achieves a 6x improvement over the baseline implementation. We also show that
by tuning the base case for the recursion, we can further improve performance by approximately 20%.
We also show a novel approach to tiling for the Floyd-Warshall algorithm that achieves performance
very close to that of the recursive implementation. Also note that today’s state of the art research
compilers cannot generate this implementation [9].

There are some natural combinations of implementation and data layout that decrease overhead
costs, such as index computation, and yield performance advantage. In this paper, we show that our
implementations of the Floyd-Warshall algorithm perform roughly equal with either the Morton layout
or the Block Data Layout.

For Dijkstra's algorithm and Prim's algorithm, to which tiling and recursion are not directly
applicable, we present a cache-friendly graph representation. By matching the data layout of the
representation to the access pattern we show up to a 2x improvement in execution time. We also
discuss the optimization of the heap. We discuss in detail the unique challenges posed by this dynamic
data structure, and present two cache-friendly optimizations for the heap. Using these optimizations
we show significant improvements in cache performance compared with the Fibonacci heap, which
represents the asymptotically optimal implementation of the heap for these algorithms.

The remainder of this paper is organized as follows: In Section 2 we give the background needed
and briefly summarize some related work in the areas of cache optimization and compiler
optimizations. In Section 3 we discuss optimizing the Floyd-Warshall algorithm. In Section 4 we
discuss optimizing the heap data structure and Dijkstra’s algorithm. In Section 5 we apply the heap
optimizations to Prim’s algorithm. In Section 6 we draw conclusions.

2. Background and Related Work

In this section we give the background information required in our discussion of various

optimizations in Section 3. In Section 2.1 we give a brief outline of the graph algorithms. Those
readers comfortable with the algorithms can skip this. In Section 2.2 we discuss some of the
challenges that are faced in making the transitive closure problem cache-friendly. We also discuss the
model that we use to analyze cache performance and the four architectures that we use for
experimentation throughout the paper. Finally, in Section 2.3 we give some information regarding
other work in the fields of cache analysis, cache-friendly optimizations, and compiler optimizations
and how they relate to our work.

2.1. Overview of Graph Algorithms

For the sake of discussion, suppose we have a directed graph G with N vertices labeled 1 to N and E

edges. The Floyd-Warshall algorithm is a dynamic programming algorithm, which computes a series
of N, NxN matrices where Dk is the kth matrix and is defined as follows: Dk

(i,j) = shortest path from
vertex i to vertex j composed of the subset of vertices labeled 1 to k. The matrix D0 is the original
graph G. We can think of the algorithm as composed of N steps. At each kth step, we compute Dk
using the data from Dk-1 in the manner shown in Figure 1 for each (i, j)th value [7].

Dijkstra’s algorithm is designed to solve the single-source shortest path problem. It does this by
repeatedly extracting from a priority queue Q the nearest vertex u to the source, given the distances
known thus far in the computation (Extract-Min operation). Once this nearest vertex is selected, all
vertices v that neighbor u are updated with a new distance from the source (Update operation). The

WallacJR
47

 3

pseudo-code for the algorithm is given in Figure 2. The optimal implementation of Dijkstra’s
algorithm utilizes the Fibonacci heap and has complexity O(Nlg(N) + E) [7].

Prim’s algorithm for Minimum Spanning Tree is very similar to Dijkstra’s algorithm for the single-
source shortest path problem. In both cases a root node or source node is chosen and all other nodes
reside in the priority queue. Nodes are extracted using an Extract-min operation and all neighbors of
the extracted vertex are updated. The difference in Prim’s algorithm is that nodes are updated with the
weight of the edge from the extracted node instead of the weight from the source or root node [7].

2.2. Challenges

Transitive closure presents a very different set of challenges from those present in dense linear

algebra problems such as matrix multiply and FFT. In the Floyd-Warshall algorithm, the operations
involved are comparison and add operations. There are no floating-point operations as in matrix
multiply and FFT. We are also faced with dependencies that require us to update the entire NxN array
Dk before moving on to the (k+1)th step (see Figure 2). This data dependency from one kth loop to the
next eliminates the ability of any commercial or research compiler to improve data reuse. We have
explored using the SUIF research compiler and found that it cannot perform the optimizations
discussed in Section 3 without user provided knowledge of the algorithm [9]. These challenges mean
that although the computational complexity of the Floyd-Warshall algorithm is O(N3), equivalent to
matrix multiply, often transitive closure displays much longer running times.

In Dijkstra’s algorithm and Prim’s algorithm, the most efficient implementation uses a Fibonacci
heap structure for the priority queue (see Section 4.2). This involves pointer manipulation and
irregular accesses, which are inherently cache-unfriendly. In fact, we can show significant
improvements in cache miss rate by using a cache-friendly implementation of the heap instead of the
asymptotically optimal Fibonacci heap.

The model that we use for our research is that of a uni-processor, cache-based system. We refer to
the cache closest to the processor as L1 with size C1, and subsequent levels as Li with size Ci.
Throughout this paper we refer to the amount of processor-memory traffic. This is defined as the
amount of traffic between the last level of the memory hierarchy that is smaller than the problem size
and the first level of the memory hierarchy that is larger than the problem size. In most cases we refer
to these as cache and memory respectively (see Figure 4). Finally, we assume an internal TLB with a
fixed number of entries.

We use four different architectures for our experiments. The Pentium III Zeon running Windows
2000 is a 700 MHz, 4 processor shared memory machine with 4 GB of main memory. Each processor
has 32 KB of level-1 data cache and 1 MB of level-2 cache on-chip. The level-1 cache is 4-way set
associative with 32 B lines and the level-2 cache is 8-way set associative with 32 B lines. The
UltraSPARC III machine is a 750 MHz SUN Blade 1000 shared memory machine running Solaris 8.
It has 2 processors and 1 GB of main memory. Each processor has 64 KB of level-1 data cache and 8
MB of level-2 cache. The level-1 cache is 4-way set associative with 32 B lines and the level-2 cache
is direct mapped with 64 B lines. The MIPS machine is a 300 MHz R12000, 64 processor, shared
memory machine with 16 GB of main memory. Each processor has 32 KB of level-1 data cache and 8
MB of level-2 cache. The level-1 cache is 2-way set associative with 32 B lines and the level-2 cache
is direct mapped with 64 B lines. The Alpha 21264 is a 500 MHz uniprocessor machine with 512 MB
of main memory. It has 64 KB of level-1 data cache and 4 MB of level-2 cache. The level-1 cache is
2-way set associative with 64 B lines and the level-2 cache is direct mapped with 64 B lines. It also
has an 8 element fully-associative victim cache. Unless otherwise specified the Simplescalar
simulations are done using 16 KB of level-1 data cache and 256 KB of level-2 cache parameters.

WallacJR
48

 4

2.3. Related Work

A number of groups have done research in the area of cache performance analysis in recent years.

Detailed cache models have been developed by Weikle, McKee, and Wulf in [29] and Sen and
Chatterjee in [25]. XOR-based data layouts to eliminate cache misses have been explored by Valero
and others in [13]. Instead of eliminating cache misses, some groups develop methods to tolerate these
misses. Multithreading has been discussed as one method of accomplishing this. Kwak and others
discuss the effects of multithreading on cache performance in [15].

A number of papers have discussed the optimization of specific dense linear algebra problems with
respect to cache performance. Whaley and others discuss optimizing the widely used Basic Linear
Algebra Subroutines (BLAS) in [30]. Chatterjee and Sen discuss a cache efficient matrix transpose in
[5]. Frigo and others discuss the cache performance of cache oblivious algorithms for matrix
transpose, FFT, and sorting in [12]. Park and Prasanna discuss dynamic data remapping to improve
cache performance for the DFT in [20]. One characteristic that all these problems share is a very
regular memory accesses that are known at compile time.

Another area that has been studied is the area of compiler optimizations (see for example [18], [19],
[24], [27]). Optimizing blocked algorithms has been extensively studied (see for example [16]). The
SUIF compiler framework includes libraries for performing data dependency analysis and loop
transformations among other things. In this context, it is important to note that SUIF does not handle
the data dependencies present in the Floyd-Warshall algorithm in a manner that improves the
processor-memory traffic. It will not perform the transformations discussed in Section 3 without user
intervention [9].

Although much of the focus of cache optimization has been on dense linear algebra problems, there
has been some work that focuses on irregular data structures. Chilimbi et. al. discusses making
pointer-based data structures cache-conscious in [6]. He focuses on providing structure layouts to
make tree structures cache-conscious. The difference between this work and ours is that we are
focusing on the dynamic heap data structure, instead of a more static tree structure such as a binary
tree. As we discuss in Section 4.2, this dynamic nature presents some unique challenges. LaMarca
and Ladner developed analytical models and showed simulation results predicting the number of cache
misses for the heap in [17]. However, the predictions they made were for an isolated heap, and the
model they used was the hold model, in which the heap is static for the majority of operations. In our
work, we assume a very dynamic nature for the heap, and we conduct experiments for complete
algorithms as opposed to isolating the heap.

We have recently published work on the Floyd-Warshall algorithm in [22] that showed a 2x
improvement using the Unidirectional Space Time Representation. Compared with [22], this paper
represents a new approach to optimizing the Floyd-Warshall algorithm, namely recursion and a novel
tiled implementation. We also expand our scope of algorithms to include Dijkstra’s algorithm for the
single source shortest path problem and Prim’s algorithm for the minimum spanning tree problem.

3. Optimizing the Floyd-Warshall Algorithm

In this section we address the challenges of the Floyd-Warshall algorithm. In Section 3.1 we

introduce and prove the correctness of a recursive implementation for the Floyd-Warshall algorithm.
We also analyze the cache performance and show experimental results for this implementation
compared with the baseline. We also show that by tuning the recursive algorithm to the cache size, we
can improve its performance by roughly 10%. In Section 3.2, we present a novel tiled implementation

WallacJR
49

 5

of the Floyd-Warshall algorithm. Finally, in Section 3.3, we address the issue of data layout for both
the blocked implementation and the recursive implementation.

Throughout this section we make use of the following assumptions. We assume a directed graph
with N vertices and E edges. We assume the cache model described in Section 2.2, where Ci < N2 for
some i and the TLB size is much less than N. To experimentally validate our approaches and their
analysis, the actual problem sizes that we are working with are between 1024 and 4096 nodes (1024 ≤
N ≤ 4096). Each data element is 8 bytes. Many processors currently on the market have in the range
of 16 to 64 KB of level-1 cache and between 256 KB and 4 MB of level-2 cache. Many processors
have a TLB with approximately 64 entries and a page size of 4 to 8KB.

In [14] it was shown that the lower bound on processor-memory traffic was Ω(N3/ C) for the usual
implementation of matrix multiply. By examining data dependency graphs for both matrix
multiplication and the Floyd-Warshall algorithm, it can be shown that matrix multiplication reduces to
the Floyd-Warshall algorithm with respect to processor-memory traffic. Therefore, we have the
following:

Lemma 3.1: The lower bound on processor-memory traffic for the Floyd-Warshall algorithm,
given a fixed cache size C, is Ω(N3/ C), where N is the number of vertices in the input graph.

3.1. A Recursive Implementation of the Floyd-Warshall Algorithm

As stated earlier, recursive implementations have recently been used to increase cache performance.

It was stated in [11] that recursive implementations perform automatic blocking at every level of the
memory hierarchy. To the authors’ knowledge, there does not exist a recursive implementation of the
Floyd-Warshall algorithm. The reason for this, is that the Floyd-Warshall algorithm not only contains
all the dependencies present in ordinary matrix multiplication, but also additional dependencies that
can not be satisfied by the simple recursive implementation of matrix multiply. What is shown here is
a novel recursive implementation of the Floyd-Warshall algorithm. We also prove the correctness of
the implementation and show analytically that it reaches an asymptotically optimal amount of
processor memory traffic.

In order to design a recursive implementation of the Floyd-Warshall algorithm, first examine the
standard implementation when applied to a 2x2 matrix. The code for this is shown in Figure 5a.
Notice that 8 calls are made to the min() operation and each call requires 3 data values from the
matrix. Convert this into a recursive program by replacing the call to the min() function with a
recursive call. Instead of passing 3 data values, pass 3 sub-matrices corresponding to quadrants of the
input matrix. This code is shown in Figure 5b. The initial call to the recursive algorithm passes the
entire input matrix as each argument. Subsequent calls pass quadrants of their input arguments as
shown in Figure 5b. Code similar to Figure 5a calling the min() operation is used as the base case for
when the input matrices are of size 2x2.

Theorem 3.1: The recursive implementation of the Floyd-Warshall algorithm detailed above
satisfies all dependencies in the Floyd-Warshall algorithm and computes the correct result.

Proof:
The correctness of this algorithm is proven using induction on the depth of the recursion tree. At

the bottom of the recursion tree, an ordinary implementation of the Floyd-Warshall algorithm is used.
Base cases:
If the depth of the recursion tree is 0, then the entire problem is solved using an ordinary

implementation of the Floyd-Warshall algorithm. This has been proven correct.

WallacJR
50

 6

When the depth of the recursion tree is 1, the matrix is divided into four quadrants. The top level of
recursion will make the 8 recursive calls shown in Figure 5b, where A = B = C. Each of these
functions will then use an ordinary implementation of the Floyd-Warshall algorithm.

The first call, step 1, passes the Northwest quadrant as each argument. Since the function then uses
an ordinary implementation of the Floyd-Warshall algorithm, this will correctly compute the
Northwest quadrant of Dk for 1 ≤ k ≤ N/2.

The second call, step 2, computes the Northeast quadrants of Dk for 1 ≤ k ≤ N/2. Examining the
dependencies for this computation shows that the data in the Northwest quadrant of Dk-1 is required in
order to compute the Northeast quadrant of Dk. This dependency is satisfied by passing the Northwest
quadrant as input to the function in step 2 and by the fact that the Northwest quadrant of Dk-1 was
computed in step 1. In the same fashion, the third call, step 3, computes the Southwest quadrant of Dk
for 1 ≤ k ≤ N/2 using data from the Northwest quadrant of Dk-1 computed in step 1.

The fourth call, step 4, requires data from both the Northeast and the Southwest quadrants of Dk-1.
These quadrants are passed as input to the function and were computed in steps 2 and 3. Using these
first 4 steps, we compute the complete Dk for 1 ≤ k ≤ N/2.

Figure 4b shows that steps 5 – 8 are the reverse of steps 1 – 4. In each step we compute the values
for one quadrant of Dk for N/2 < k ≤ N. All data required in each step is computed either in that step or
in a previous step.

Inductive step:
Assume that the algorithm correctly computes the output when the depth of the recursion is d.

When we consider the problem when the depth of recursion is d+1, each recursive call at the first level
(Figure 4b), is a call to a problem in which the depth of recursion is d. Each of these calls has been
assumed to run correctly, given that all data required is available at the time of execution. It was
already shown that all data required for each of the 8 recursive calls at the top level is computed either
during that step or in a previous step. Therefore, the algorithm runs correctly when the depth of
recursion is d+1, and by induction, the algorithm runs correctly for all recursion depths. <

Theorem 3.2: The recursive implementation reduces the processor-memory traffic by a factor
of B, where ()CB Ο= . This is accomplished without any machine dependant setup cost, such
as tuning of the block size.

Proof:
Note that the running time of this algorithm is given by

() 3

2
*8 N

N
TNT =

=

Define the amount of processor memory traffic by the function D(x). Without considering cache,
the function behaves exactly as the running time.

() 3

2
*8 N

N
DND =

=

Consider the problem after k recursive calls. At this point the problem size is N/2k. There exists
some k such that N/2k = ()CΟ , where C = cache size. For simplicity we set B = N/2k. At this point, all
data will fit in the cache and no further traffic will occur for recursive calls below this point.
Therefore:

() ()2BOBD =
By combining Equation 2 and Equation 3 it can be shown that:

1

2

3

WallacJR
51

 7

() ()
B
N

BD
B
N

ND
3

3

3

* ==

Therefore, the processor-memory traffic is reduced by a factor of B. <
Theorem 3.3: The recursive implementation reduces the traffic between the ith and the (i-1)th
level of cache by a factor of Bi at each level of the memory hierarchy, where ()ii CB Ο= .

Proof:
Note first of all, that no tuning was assumed when calculating the amount of processor-memory

traffic in the proof of Theorem 3.2. Namely, Equation 3 holds fo r any N and any B where ()CB Ο= .
In order to prove Theorem 3.3, first consider the entire problem and the traffic between main

memory and the mth level of cache (size Cm). By Theorem 3.2, the traffic will be reduced by Bm where
()mm CB Ο= . Next consider each problem of size Bm and the traffic between the mth level of cache and

the (m-1)th level of cache (size Cm-1). By replacing N in Theorem 3.2 by Bm, it can be shown that this
traffic is reduced by a factor of Bm-1 where ()11 −− Ο= mm CB .

This simple extension of Theorem 3.2 can be done for each level of the memory hierarchy, and
therefore the processor-memory traffic between the ith and the (i-1)th level of cache will be reduced by
a factor of Bi, where ()ii CB Ο= . <

Finally, recall from Lemma 3.1 that the lower bound on processor-memory traffic for the Floyd-
Warshall algorithm is given by Ω(N3/ C), where C is the cache size. Also recall from Theorem 3.2
the upper bound on processor-memory traffic that was shown for the recursive implementation was
O(N3/B), where B2 = O(C). Given this information we have the following Theorem.

Theorem 3.4: Our recursive implementation is asymptotically optimal among all
implementations of the Floyd-Warshall algorithm with respect to processor-memory traffic.

As a final note in the recursive implementation, we show up to 2x improvement when we set the
base case such that the base case would utilize more of the cache closest to the processor. Once we
reached a problem size B, where B2 is on the order of the cache size, we execute a standard iterative
implementation of the Floyd-Warshall algorithm. This improvement varied from one machine to the
next and is due to the decrease in the overhead of recursion. It can be shown that the number of
recursive calls in the recursive algorithm is reduced by a factor of B3 when we stop the recursion at a
problem of size B. A comparison of full recursion and recursion stopped at a larger block size is
shown for the Pentium III and the UltraSPARC III in Figures 11 and 12.

In order to improve performance, B 2 must be chosen to be on the order of the L1 cache size. The
simplest and possibly the most accurate method of choosing B is to experiment with various tile sizes.
This is the method that the Automatically Tuned Linear Algebra Subroutines (ATLAS) project
employs [30]. However, it is beneficial to find an estimate of the optimal tile size. A block size
selection heuristic for finding this estimate is discussed in [22], and outlined here.

• Use the 2:1 rule of thumb from [14] to adjust the cache size to that of an equivalent 4-way set
associative cache. This minimizes conflict misses since our working set consists of 3 tiles of
data. Self- interference misses are eliminated by the data being in contiguous locations within
each tile and cross interference misses are eliminated by the associativity.

• Choose B by Equation 5, where d is the size of one element and C is the adjusted cache size.
This minimizes capacity misses.

CdB =**3 2
The baseline we use for our experiments is a straightforward implementation of the Floyd-Warshall

algorithm. It was shown in [22] that standard optimizations yield limited performance increases on

5

4

WallacJR
52

 8

most machines. The Simplescalar results in Table 1 for the recursive implementation show a 30%
decrease in level-1 cache misses and a 2x decrease in level-2 cache misses for problem sizes of 1024
and 2048. In order to verify the improvements on real machines, we compare the recursive
implementation of the Floyd-Warshall algorithm with the baseline. For these experiments the best
block size was found experimentally. The results show a 10x improvement in overall execution time
on the Alpha, better than 7x improvement on the Pentium III and the MIPS, and almost a 3x
improvement on the UltraSPARC III. These results are shown in Figures 7-10. Figures 11 and 12
show that a 2x improvement in execution time on the UltraSPARC III can be gained by choosing the
optimal base block size. Likewise, a 30% improvement can be gained on the Pentium III. Differences
in performance gains between machines are expected, due to the wide variance in cache parameters
and miss penalties.

3.2. A Tiled Implementation for the Floyd-Warshall Algorithm

Compiler groups have used tiling to achieve higher data reuse in looped code. Unfortunately, the

data dependencies from one k- loop to the next in the Floyd-Warshall algorithm make it impossible for
current compilers including research compilers to perform 3 levels of tiling. In order to tile the
outermost loop we must cleverly reorder the tiles in such a way that satisfies data dependencies from
one k-loop to the next as well as within each k- loop.

Consider the following tiled implementation of the Floyd-Warshall algorithm. Tile the problem into
BxB tiles. During the kth block iteration, update first the (k,k)th tile, then the remainder of the kth row
and kth column, then the rest of the matrix. Figure 5 shows an example matrix tiled into a 4x4 matrix
of blocks. Each block is of size BxB. During each outermost loop, we would update first the black tile
representing the (k,k)th tile, then the grey tiles, then the white tiles. In this way we satisfy all
dependencies from each kth loop to the next as well as all dependencies within each kth loop.

Theorem 3.5: The new tiled implementation of the Floyd-Warshall algorithm reduces the
processor memory traffic by a factor of B where B2 is on the order of the cache size.

Proof sketch: At each block we perform B3 operations. There are N/B x N/B blocks in the array
and we pass through each block N/B times. This gives us a total of N3 operations. In order to process
each block we require only 3*B2 elements. This gives us a total of N3/B total processor-memory
traffic. <

Given this upper bound on traffic for the tiled implementation and the lower bound shown in
Lemma 3.1, we have.

Theorem 3.6: The new tiled implementation is asymptotically optimal among all
implementations of the Floyd-Warshall algorithm with respect to processor-memory traffic.

When implementing the tiled implementation of the Floyd-Warshall algorithm, it is important to use
the best possible block size. As mentioned in Section 3.1, the best block size should be found
experimentally, and the block size selection heuristic discussed in Section 3.1 can be used to give a
rough bound on the best block size. However, when implementing the tiled implementation, it is also
important to note that the search space must take into account each level of cache as well as the size of
the TLB. Given these various solutions for B the search space should be expanded accordingly.

Simplescalar results for the tiled implementation are shown in Table 2. These results show a 2x
improvement in level-2 cache misses and a 30% improvement in level-1 cache misses. Experimental
results show a 10x improvement in execution time for the Alpha, better than 7x improvement for the
Pentium III and the MIPS and roughly a 3x improvement for the UltraSPARC III (See Figures 13-16).

3.3. Data Layout Issues

WallacJR
53

 9

It is also important to consider data layout when implementing any algorithm. It has been shown by

a number of groups that data layouts tuned to the data access pattern of the algorithm can reduce both
TLB and cache misses (see for example [20], [22], and [4]). In the case of the recursive algorithm, the
access pattern is matched by a Z-Morton data layout. The Z-Morton ordering is a recursive layout
defined as follows: Divide the original matrix into 4 quadrants and lay these tiles in memory in the
order NW, NE, SW, SE. Recursively divide each quadrant until a limiting condition is reach. This
smallest tile is typically laid out in either row or column major fashion (see Figure 18). See [5] for a
more formal definition of the Morton ordering.

In the case of the tiled implementation, the Block Data Layout (BDL) matches the access pattern.
The BDL is a two level mapping that maps a tile of data, instead of a row, into contiguous memory.
These blocks are laid out row-wise in the matrix and data is laid out row-wise within the block (see
Figure 17). By setting the block size equal to the tile size in the tiled computation, the data layout will
exactly match the data access pattern.

We experimented with both of these data layouts for each of the algorithms. The results are shown
in Tables 3 and 4. All of the execution times were within 15% of each other with the Z-Morton data
layout winning slightly for the recursive implementation and the BDL winning slightly for the tiled
implementation. The fact that the Z-Morton was slightly better for the recursive implementation and
likewise the BDL for the tiled implementation was exactly as expected, since they match the data
access pattern most closely. The closeness of the results is mostly likely due to the fact that the
majority of the data reuse is within the final block. Since both of these data layouts have the final
block laid out in contiguous memory locations, they perform equally well.

It is also important to note that the Z-Morton data layout has a very complex index computation,
which can only be hidden in a recursive algorithm. The BDL has a very simple index computation in
comparison. Therefore it is significant to show that for non-recursive algorithms, the BDL performs
just as well or better, while avoiding the overhead of a complex index computation.

4. Optimizing the Single-Source Shortest Path Problem

In this section we discuss cache-friendly optimizations of Dijkstra’s algorithm for the single-source

shortest path problem. We first consider the input graph representation in Section 4.1. For small
problem sizes, the graph representation represents the majority of the processor memory traffic. We
present a cache friendly representation that improves performance by 20% to 2x. In Section 4.2, we
discuss optimizing the priority queue. As the heap is the most common and the most optimal
implementation of the priority queue, we focus on designing a cache-friendly heap data structure. We
compare our implementation to the asymptotically optimal implementation of the heap in Dijkstra’s
algorithm with respect to time complexity, the Fibonacci heap.

4.1. Optimizing the Graph Representation

For the problem sizes that we have considered in Section 3, i.e. 1K to 4K nodes, the graph

representation represents the majority of traffic in Dijkstra’s algorithm. This is due to the fact that the
priority queue is very small and fits entirely within the cache. Cache conflicts between the graph
representation and the priority queue can pose a problem even at these small sizes, but we assume for
this section that the conflicts are minimal. For all problem sizes, the size of the priority queue starts at
N and decreases throughout the computation. In contrast, the graph representation will be of size O(N
+ E), where E = O(N2) for dense graphs.

WallacJR
54

 10

One difficulty we face when optimizing the graph representation is the access pattern. Each
element in the representation is accessed exactly once. For each node that is extracted from the heap,
the corresponding list of adjacent nodes is read from the graph representation. Once each node is
extracted from the heap, the computation is complete. In this context, we can take advantage of two
things. The first is prefetching. Modern processors perform aggressive prefetching in order to hide
memory latencies. The second is to optimize at the cache line level. In this case, a single miss would
bring in multiple elements that would subsequently be accessed and result in cache hits. This is known
as minimizing cache pollution.

There are two commonly used graph representations. The adjacency matrix is an NxN matrix,
where the (i,j)th element is the cost from the ith element to the jth element. This representation is of size
O(N2). It has the nice property that elements are accessed in a contiguous fashion and therefore, cache
pollution will be minimized and prefetching will be maximized. However, for sparse graphs, the size
of this representation is inefficient. The adjacency list representation is a pointer-based representation
where a list of adjacent nodes is stored for each node in the graph. Each node in the list includes the
cost of the edge from the given node to the adjacent node. This representation has the property of
being of optimal size for all graphs, namely O(N+E). However, the fact that it is pointer based, leads
to cache pollution and difficulties in prefetching.

Consider a simple combination of these two representations. For each node in the graph, we have a
corresponding array of adjacent nodes. The size of this array is exactly the out-degree of the given
node. There are simple methods to construct this representation when the out-degree is not known
until run time. For this representation, the elements at each point in the array look similar to the
elements stored in the adjacency list. Each element must store both the cost of the path and the index
of the adjacent node. Since the size of each array is exactly the out-degree of the corresponding node,
the size of this representation is exactly O(N+E). This makes it optimal with respect to size. Also,
since the elements are stored in arrays and therefore in contiguous memory locations, the cache
pollution will be minimized and prefetching will be maximized. Subsequently this representation will
be referred to as the adjacency array representation.

In order to demonstrate the performance improvements using our graph representation, we
performed Simplescalar simulations as well as experiments on two different machines, the Pentium III
and UltraSPARC III, for Dijkstra’s algorithm. The Simplescalar simulations show a significant
improvement in level-2 cache misses for the adjacency array representation compared with the
adjacency list representation (see Table 5). This is due to the reduction in cache pollution and increase
in prefetching tha t was predicted. The experimental results also demonstrate improved performance.
Figures 20 - 23 show a 2x improvement for Dijkstra’s algorithm on the Pentium III and a 20%
improvement on the UltraSPARC III This significant difference in performance is due in part to the
difference in the memory hierarchy of these two architectures.

A second comparison to observe is between the Floyd-Warshall algorithm and Dijkstra’s algorithm
for very sparse graphs, i.e. edge densities less than 20%. For these graphs, Dijkstra’s algorithm is
more efficient for the all pairs shortest path problem. By using the adjacency array representation of
the graph in Dijkstra’s algorithm, the range of graphs over which Dijkstra’s algorithm outperforms the
Floyd-Warshall algorithm, can be increased. Figures 24 and 25 show a comparison of the best Floyd-
Warshall algorithm with Dijkstra’s algorithm for sparse graphs. On the Pentium III, we were able to
increase the range for Dijkstra’s algorithm from densities up to 5% to densities up to 20%. On the
UltraSPARC III we increased the range from densities up to 20% to densities up to 35%.

4.2. Optimizing the Priority Queue

WallacJR
55

 11

For very large problems, those in which N is much larger than the cache size, the priority queue can
generate a large number of cache misses. For this reason, we discuss optimizing the priority queue.
Due to the length of time required to simulate or execute either Dijkstra’s algorithm or Prim’s
algorithm for very large problem sizes, we have defined an architecture for which small problem sizes
will stress the memory hierarchy. This architecture has a 4KB level-1 cache and 16KB level-2 cache.
The problem size we used was 4096 nodes with a density of 90%. Using these parameters we show
Simplescalar results to demonstrate improved cache performance.

Optimizing the priority queue to improve cache performance presents a very unique set of
challenges. The optimal implementation with respect to running time uses the Fibonacci heap. This
implementation is a pointer based data structure that is extremely dynamic. Nodes are moved within
each tree and among trees in almost every operation. In [6], Chilimbi et al. discusses the optimization
of various pointer based data structures. However, he focuses on very static structures where the main
access pattern is a root to leaf path traversal. This work cannot be directly applied to the heap for two
reasons. The first is the dynamic nature of the heap that was just mentioned. The second is the fact
that the access pattern is often not a simple root to leaf path. For example an update operation will
start by accessing an element in the middle of the tree and then traverse up the tree for some time. In
[17], LaMarca et. al. discusses the analysis and optimization of the heap. The heap analysis and
experiments that are discussed here differ significantly from that work. We assume that the heap is
very dynamic, while the analysis done by LaMarca is done in the Hold model, one in which the heap is
static for most of the operations. LaMarca also isolates the heap for analysis and experimentation,
whereas we conduct all of our simulations on the complete Dijkstra’s algorithm.

In order to establish a baseline, we examine the performance of the Fibonacci heap in Dijkstra’s
algorithm. The Fibonacci heap represents the optimal implementation of the priority queue with
respect to time complexity. The Extract-min operation requires O(lg V) time and the Update operation
takes O(1), constant time when amortized over all operations. The total time complexity for Dijkstra’s
single source shortest path problem using the Fibonacci heap is O((VlgV + E).

In contrast to the Fibonacci heap consider the clustered heap, a more cache-friendly implementation
of the priority queue. In [6], Chilimbi et. al. presents a simple ancestor-descendant clustering within
cache lines for static trees. By placing d element subtrees into cache lines, you will incur only one
miss to access a path through any given subtree. When compared with a breadth-first mapping this
will decrease processor-memory traffic by a factor of lg(d), where lg(d) is the height of the subtree in a
single cache line and d is the number of elements that fit into a cache line. When applying this
technique to the heap, there are a few factors that must be considered. The first is the dynamic nature
of the heap in the context of Dijkstra’s algorithm. We are able to decrease the dynamic nature some
by applying the clustering to a standard implementation of the heap. This presents much less data
movement than in the Fibonacci heap. One nice property of the heap is its simple index computation
for ancestors and descendants. Unfortunately, this property does not remain once we apply the
clustering layout. In order to realize the clustering layout, while sustaining the property of simple
index computation, we place an indirection layer between the access and the data. This layer is
actually a standard heap containing pointers to the actual data. The size of this indirection heap is
much smaller than the real heap and therefore, presents few problems with respect to the cache.
Figure 19 gives a graphical example of using the indirection heap to access the clustered data layout.
In this fashion we can decrease the cost of access by a factor of lg(d) and retain the property of a
simple index computation.

As a second cache friendly implementation of the priority queue, consider a partitioned heap. In
this case the original large heap would be partitioned into k independent heaps, each of size c, where c

WallacJR
56

 12

is the on the order of the cache size. If we divide the original heap by placing the first N/k nodes into
the first heap and so on, we can order the updates following each extract-min, such that each
independent heap will be brought into the cache at most once. In this way, no node in the partitioned
heap will be brought into the cache more than once, and the amount of traffic is bounded by V. Since
we perform V extract-min’s and subsequent updates, the total traffic for the Update operations will be
bounded by V2 compared with a possible E*lg(V), where E = O(V2) for dense graphs. In order to find
the minimum, we must examine the minimum of each of the k independent heaps rather than just
extracting the root of our original large heap. Once the minimum is located, there is a small reduction
in the cost for the actual extraction. The total cost for the extract-min will then be O(k + lg(V/k)).

In order to demonstrate the cache performance of the clustered heap and the partitioned heap, we
define an architecture in which the cache will be stressed as mentioned earlier and perform
Simplescalar simulations for Dijkstra’s algorithm. The result is shown in Table 6. Notice the
reduction in the level-2 cache miss rate for the clustered heap and the partitioned heap vs. the
Fibonacci heap. The results also show that the partitioned heap performs slightly better than the
clustered heap in both level-1 and level-2 cache miss rate.

5. Optimizing the Minimum Spanning Tree Problem

As mentioned in Section 2, Prim’s algorithm for minimum spanning tree is very similar to

Dijkstra’s algorithm for the single source shortest path problem. For this reason the optimizations
applicable to Dijkstra’s algorithm are applicable to Prim’s algorithm. Figures 26 - 29 show the result
of applying the optimization to the graph representation discussed in Section 4.1 to Prim’s algorithm.
Recall that this was an optimization to the graph representation replacing the adjacency list
representation with the adjacency array representation. Our results show a 2x improvement on the
Pentium III running Windows 2000 and 20% for the UltraSPARC III. These results are for problem
sizes 2048 and 4096. This result is very similar to the results we saw for the same comparison in
Dijkstra’s algorithm. Recall that our Simplescalar results for Dijkstra’s algorithm showed an
improvement in the level-2 cache misses. Based on the similarity between Dijkstra’s algorithm and
Prim’s algorithm, we could expect similar cache performance improvements for Prim’s algorithm.

6. Conclusion

Using various optimizations for graph algorithms, we have showed a 3x to 10x improvement for the

Floyd-Warshall algorithm and a 20% to 2x improvement for Dijkstra’s algorithm and Prim’s algorithm.
Our optimizations to the Floyd-Warshall algorithm represent a novel recursive implementation as well
as a novel tiled implementation of the algorithm. We also compared the performance of a non- linear
data layout with that of a simple block data layout. For Dijkstra’s algorithm and Prim’s algorithm, we
presented a cache-friendly graph representation that gave significant performance improvements. We
also discussed optimization of the priority queue and showed significant improvements in cache miss
rate for our clustered heap and our partitioned heap compared with the Fibonacci heap.

This work is part of the Algorithms for Data IntensiVe Applications on Intelligent and Smart
MemORies (ADVISOR) Project at USC [1]. In this project we focus on developing algorithmic
design techniques for mapping applications to architectures. Through this we understand and create a
framework for application developers to exploit features of advanced architectures to achieve high
performance.

WallacJR
57

 13

7. References

[1] ADVISOR Project. http://advisor.usc.edu/.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Company, Menlo Park, California, 1974.

[3] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. University of Wisconsin-
Madison Computer Sciences Department Technical Report #1342, June, 1997.

[4] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear Array
Layouts for Hierarchical Memory Systems. ACM Symposium on Parallel Algorithms and
Architectures, 1999.

[5] S. Chatterjee and S. Sen. Cache Efficient Matrix Transposition. In Proc. of International
Symposium on High Performance Computer Architecture, January 2000.

[6] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-Conscious Structure Layout. In Proc. of
ACM SIGPLAN Conference on Programming Language Design and Implementation, May 1999.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, Massachusetts, 1990.

[8] M. Cosnard, P. Quinton, Y. Robert, and M. Tchuente (editors). Parallel Algorithms and
Architectures. North Holland, 1986.

[9] P. Diniz. USC ISI, Personal Communication, March, 2001.

[10] M. Fredman and R. Tarjan. Fibonacci Heaps and Their Uses in Improved Network Optimization
Algorithms. Journal of the Association for Computing Machinery, vol. 34, no. 3, July 1987.

[11] Jeremy D. Frens and David S. Wise. Auto-blocking matrix-multiplication or tracking BLAS3
performance from source code. In Proc. of the Sixth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, June 1997.

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious Algorithms. In
Proc. of 40th Annual Symposium on Foundations of Computer Science, 17-18, New York, NY, USA,
October, 1999.

[13] A. Gonzalez, M. Valero, N. Topham, and J. M. Parcerisa. Eliminating Cache Conflict Misses
through XOR-Based Placement Functions. In Proc. of 1997 International Conference on
Supercomputing, Vienne, Austria, July, 1997.

[14] J. Hong and H. Kung. I/O Complexity: The Red Blue Pebble Game. In Proc. of ACM
Symposium on Theory of Computing, 1981.

[15] H. Kwak, B. Lee, A. R. Hurson, S. Yoon and W. Hahn. Effects of Multithreading on Cache
Performance. IEEE Transactions on Computers, Vol. 48, No. 2, February 1999.

[16] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. In Proc. of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, Palo Alto, California, April 1991.

[17] A. LaMarca and R. E. Ladner. The Influence of Caches on the Performance of Heaps. ACM
Journal of Experimental Algorithmics, 1, 1996.

WallacJR
58

 14

[18] D. Padua. The Fortran I Compiler. Computing in Science & Engineering, January/February
2000.

[19] D. A. Padua. Outline of a Roadmap for Compiler Technology. IEEE Computational Science &
Engineering, Fall 1996.

[20] N. Park, D Kang, K Bondalapati, and V. K. Prasanna. Dynamic Data La youts for Cache-
conscious Factorization of the DFT. In Proc. of International Parallel and Distributed Processing
Symposium, May 2000.

[21] D. A. Patterson and J. L. Hennessy. Computer Architecture A Quantitative Approach. 2nd Ed.,
Morgan Kaufmann Publishers, Inc., San Francisco, California, 1996.

[22] M. Penner and V. K. Prasanna. Cache-Friendly Implementations of Transitive Closure. In Proc.
of International Conference on Parallel Architectures and Compiler Techniques, Barcelona, Spain,
September 2001.

[23] G. Rivera and C. Tseng. Data Transformations for Eliminating Conflict Misses. In Proceedings
of the 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation,
Montreal, Canada, June 1998.

[24] F. Rastello and Y. Robert. Loop Partitioning Versus Tiling for Cache-Based Multiprocessor. In
Proc. of International Conference Parallel and Distributed
Computing and Systems, Las Vegas, Nevada, 1998.

[25] S. Sen, S. Chatterjee. Towards a Theory of Cache-Efficient Algorithms. In Proc. of Symposium
on Discrete Algorithms, 2000.

[26] SPIRAL Project. http://www.ece.cmu.edu/~spiral/.

[27] X. Tang, R. Ghiya, L. J. Hendren, and G. R. Gao. Heap Analysis and Optimizations for
Threaded Programs. In Proc. of International Conference on Parallel Architectures and Compilation
Techniques, pages 14--25, San Francisco, Calif., November 1997.

[28] J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, Rockville, Maryland,
1983.

[29] D. A. B. Weikle, S. A. McKee, and Wm.A. Wulf. Caches As Filters: A New Approach To
Cache Analys is. In Proc. of Grace Murray Hopper Conference, September 2000.

[30] R. C. Whaley and J. J. Dongarra. Automatically Tuned Linear Algebra Software. High
Performance Computing and Networking, November 1998.

WallacJR
59

 15

i

j
k

Dk
(i,j) = min[Dk-1

(i,j) , Dk-1
(i,k)+Dk-1

(k,j)]

Figure 1: kth step of Floyd-Warshall

Algorithm

kth row

kth column

(i,j)th element

Dk+1
(i,j) = min{Dk

(i,j), Dk
(i,k)+Dk

(k,j)}

Figure 3: kth iteration of outer loop
in Floyd-Warshall
Algorithm

Figure 2: Dijkstra’s algorithm

Definitions: V[G] is the set of
vertices, Adj[u] is the adjacency
list for vertex u, d[v] is the
distance from the source to v

S = Ø
Q = V[G]
While Q ≠ Ø
 u = Extract-Min(Q)
 S = S U {u}
 For each vertex v ∈ Adj[u]
 Update d[v]

Floyd-Warshall (A)
{
 A11 = min(A11, A11+A11);
 A12 = min(A12, A11+A12);
 A21 = min(A21, A21+A11);
 A22 = min(A22, A21+A12);
 A22 = min(A22, A22+A22);
 A21 = min(A21, A22+A21);
 A12 = min(A12, A12+A22);
 A11 = min(A11, A12+A21);
}

FWR (A, B, C)
{
 if (not base case) {
 FWR(A11, B11, C11);
 FWR(A12, B11, C12);
 FWR(A21, B21, C11);
 FWR(A22, B21, C12);
 FWR(A22, B22, C22);
 FWR(A21, B22, C21);
 FWR(A12, B12, C22);
 FWR(A11, B12, C21);
 }
 else {
 /* run standard Floyd-

 Warshall */
 …
 }
}

Figure 5, a&b: Recursive implementation of the Floyd-
Warshall algorithm (FWR)

Processor

Memory

Cache
Adjacency

Matrix Processor

Memory

Cache
Adjacency

Matrix

Figure 4: Processor-Memory traffic
diagram

Figure 6: Diagram for tiled
implementation of the
Floyd-Warshall algorithm

WallacJR
60

 16

Data level-1 cache misses
N Baseline Recursive

1024 0.806 0.546
2048 6.442 4.362

(billions)

Data level-2 cache misses
N Baseline Recursive

1024 0.537 0.280
2048 4.294 2.232

(millions)

0

1000

2000

3000

4000

5000

6000

E
xe

cu
ti

o
n

 t
im

e
(s

)

Baseline 91.985 697.172 5918.437

Recursive 13.18 103.4765 820.453

1024 2048 4096

Figure 8: Baseline vs. Recursi ve
implementation on
UltraSPARC III

0

2000

4000

6000

8000

E
xe

cu
ti

o
n

 t
im

e
(s

)

Baseline 80.86739 681.136 6079.114

Recursive 38.26829 307.3337 2460.533

1024 2048 4096

Table 1: Simplescalar result
(Recursive Floyd-Warshall)

0

2000

4000

6000

8000

10000

12000

E
xe

cu
ti

o
n

 t
im

e
(s

)

Baseline 110.688 1123.235 11276.81

Recursive 12.326 99.099 797.140

1024 2048 4096

Figure 7: Baseline vs. Recursi ve
implementation on Pentium III

Data level-1 cache misses
N Baseline Tiled

1024 0.806 0.542
2048 6.442 4.326

(billions)

Data level-2 cache misses
N Baseline Tiled

1024 0.537 0.276
2048 4.294 2.195

(millions)

Table 2: Simplescalar result
(Tiled Floyd-Warshall)

Figure 9: Baseline vs. Recursi ve
implementation on Alpha

0

1000

2000

3000

4000

5000

6000

E
xe

cu
ti

o
n

 t
im

e
(s

)

Baseline 149.52 1546.15 10984.92

Recursive 22.73 175.50 1453.125

1024 2048 4096

Figure 10: Baseline vs. Recursi ve
implementation on MIPS

WallacJR
61

 17

0

1000

2000

3000

4000

5000

6000

E
xe

cu
ti

o
n

 t
im

e
(s

)

Baseline 80.87 681.14 6079.11

Tiled 33.47 270.85 2179.26

1024 2048 4096

Figure 14: Baseline vs. Tiled
implementation on
UltraSPARC III

Figure 13: Baseline vs. Tiled
implementation on
Pentium III

0

1000

2000

3000

4000

5000

6000

Baseline 91.985 697.172 5918.44

Tiled 12.5935 99.0935 778.391

1024 2048 4096

0

1000

2000

3000

4000

5000

6000

Baseline 110.688 1123.23 11276.8

Tiled 12.4567 99.6538 800.637

1024 2048 4096

Figure 15: Baseline vs. Tiled
implementation on Alpha

0

1000

2000

3000

4000

5000

6000

E
xe

cu
tio

n
tim

e
(s

)

Baseline 149.52 1546.15 10984.92

Tiled 17.27 138.81 1106.44

1024 2048 4096

Figure 16: Baseline vs. Tiled
implementation on MIPS

0
100
200
300

400
500
600

4 76

Block size

E
xe

cu
ti

o
n

 t
im

e
(s

)

0

50

100

150

200

4 256

Block size

E
xe

cu
ti

o
n

 t
im

e
(s

)

Figure 11: Execution times for different
base block sizes (Full recursion
vs. Optimal block size) on
UltraSPARC III, N = 2048

Figure 12: Execution times for different
base block sizes (Full
recursion vs. Optimal block
size) on Pentium III, N = 2048

WallacJR
62

 18

I II

III IV

1 2 5 6
3 4 7 8
9 10 13 14

16151211

17 18 21 22
19 20 23 24
25 26 29 30

32312827
49 50 53 54
51 52 55 56
57 58 61 62

64636059

33 34 37 38
35 36 39 40
41 42 45 46

48474443

Figure 19: Clustered Heap
Operation

1 page/block

Blocks laid out
row-wise.

Elements laid
out row-wise
inside blocks.

√N

Figure 17: The Block Data

Layout
Figure 18: The Morton Layout

0

1 2

4 5 6 3

7 8

0

3
2
1

4
5
6
7
8

0

1 2

4 5 6 3

7 8

0

3
2
1

4

7
8

Cache miss rates
 Linked-List Array

D-Level 1 0.2936 0.2622
D-Level 2 0.4242 0.3545

(DL1:16k, DL2:256k, Input: 2048 nodes, 0.9 density)

Table 5: Simplescalar results for

Linked-List and Array graph
representation

Recursive Implementation
N Morton

Layout
Block Data

Layout
2048 103.48 111.42
4096 820.45 878.89

(sec)

Tiled Implementation
N Morton

Layout
Block Data

Layout
2048 99.25 99.39
4096 779.53 780.41

(sec)

Table 3: Pentium III results for data

layout comparison.

Recursive Implementation
N Morton

Layout
Block Data

Layout
2048 307.33 311.26
4096 2460.53 2488.88

(sec)

Tiled Implementation
N Morton

Layout
Block Data

Layout
2048 278.48 271.35
4096 2248.20 2184.09

(sec)

Table 4: Ultrasparc III results for data

layout comparison.

WallacJR
63

 19

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6

Graph density

E
xe

cu
tio

n
tim

e
(s

)

Linked-List
Array
FW-Tiled

Figure 25: Linked-List and Array graph
representation for Dijkstra’s
algorithm vs. best Floyd-
Warshall on UltraSPARC III,
N = 2048

Figure 24: Linked-List and Array graph
representation for Dijkstra’s
algorithm vs. best Floyd-
Warshall on Pentium III,
N = 2048

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25

Graph density

E
xe

cu
tio

n
tim

e
(s

)

Linked-List
Array
FW-Tiled

0
50

100
150
200
250
300
350
400
450
500

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)
Linked-List

Array

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

Figure 21: Linked-List vs Array graph
representation for Dijkstra’s
alg. on Pentium III, N = 4096

Figure 20: Linked-List vs Array graph
representation for Dijkstra’s
alg. on Pentium III, N = 2048

0

100

200

300

400

500

600

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

Figure 22: Linked-List vs Array graph
representation for Dijkstra’s alg.
on UltraSPARC III, N = 2048

Figure 23: Linked-List vs Array graph
representation for Dijkstra’s alg.
on UltraSPARC III, N = 4096

0

500

1000

1500

2000

2500

3000

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

WallacJR
64

 20

 Baseline
(Fibonacci heap)

Clustered Heap k-Partitioned Heap

Computational
complexity

O((VlgV + E) O((V+E)lgV) O(Vk+(V+E)lg(V/k))

Data Level-1
cache miss rate

0.0427 0.0479 0.0455

Data Level-2
cache miss rate

0.5927 0.3138 0.2914

Data Level-1
cache misses

59521364 62833311 61504500

Data Level-2
cache misses

51973614 54356226 50013594

(DL1:2k, DL2:8k, Input graph: 4096 nodes with 0.9 Density)

Table 6: Simplescalar results for Dijkstra’s algorithm with various
heap implementations

0
50

100
150
200
250
300
350
400
450
500

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

0

200

400

600

800

1000

1200

1400

1600

1800

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

Figure 26: Linked-List vs Array graph
representation for Prim’s alg.
on Pentium III, N = 2048

Figure 28: Linked-List vs Array graph
representation for Prim’s alg.
on UltraSPARC III, N = 2048

Figure 29: Linked-List vs Array graph
representation for Prim’s alg.
on UltraSPARC III, N = 2048

0

50

100

150

200

250

300

350

400

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

0

200

400

600

800

1000

1200

1400

1600

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

Figure 27: Linked-List vs Array graph
representation for Prim’s alg.
on Pentium III, N = 4096

WallacJR
65

Optimizing Graph Algorithms for Improved Cache Performance

Joon-Sang Park, Michael Penner,
and Viktor K. Prasanna

CENG 02-01

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, California 90089-2562
(213-740-4483)

WallacJR
66

 2

Optimizing Graph Algorithms for Improved Cache Performance*+

Joon-Sang Park, Michael Penner, and Viktor K. Prasanna
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, California 90089-2562
{jsp, mipenner, prasanna}@usc.edu

http://advisor.usc.edu

Abstract
Graph algorithms are fundamental in a wide variety of fields, and while much focus has been on
optimizing various algorithms for improved cache performance, little focus has been on the area of
graph algorithms. The reasons for this are varied, but at the core is that graph algorithms pose a very
different and complex challenge to improving cache performance. In this paper, we present a new
recursive implementation for the fundamental graph problem of Transitive Closure, namely the Floyd-
Warshall Algorithm, and prove its optimality with respect to processor-memory traffic. Using this
cache-oblivious implementation we show more than a 6x improvement in execution time on three
different architectures. We also discuss the impact of data layout on cache performance in the context
of a tiled implementation of the Floyd-Warshall algorithm. Secondly, we address Dijkstra’s algorithm
for the single-source shortest-path problem and Prim’s algorithm for Minimum Spanning Tree, for
which neither tiling nor recursion can be directly applied. For these algorithms, we demonstrate up to
a 2x improvement by using a cache-friendly graph representation. Finally, we apply both the cache
friendly graph representation and the basic idea of tiling to the problem of graph matching. Using
these techniques we show performance improvements of 2x – 3x. Experimental results are shown for
the Pentium III, UltraSPARC III, Alpha 21264, and MIPS R12000 machines. Problem sizes ranged
from 1024 to 4096 vertices for the Floyd-Warshall algorithm and up to 65536 vertices for Dijkstra’s
algorithm, Prim’s algorithm, and graph matching. We demonstrate improved cache performance
using the SimpleScalar simulator.

* Supported by the US DARPA Data Intensive Systems Program under contract F33615-99-1-1483 monitored by Wright
Patterson Airforce Base and in part by an equipment grant from Intel Corporation.
+ A previous version of this paper appears in Proceedings of the International Parallel and Distributed Processing
Symposium, April 2002.

WallacJR
67

 3

1. Introduction

The motivation for this work is what is commonly referred to as the processor-memory gap.

While memory density has been growing rapidly, the speed of memory has been far outpaced by the
speed of modern processors. Current latencies to memory are on the order of 100 processor cycles.
This phenomenon has resulted in severe application level performance degradation on high-end
systems. This problem has been well studied for many dense linear algebra problems, such as matrix
multiplication and FFT (see for example, [23][32][36]). A similar problem is also present and well
studied in I/O systems (see for example, [17][33]).

A number of groups are attempting to improve performance by performing computations in
memory. Smart memory or processing in memory takes advantage of the high on chip bandwidth of
memory to perform data intensive operations (see for example, [4][20][37]). Other groups are
attacking the problem in software; either in the compiler through reordering instructions and
prefetching (see for example, [16][18][27]) or through complex data layouts to improve cache
performance (see for example, [6][10][13]).

Achieving better overall performance by optimizing cache performance is a difficult problem. The
performance of deep memory hierarchies present in most modern processors has been shown to differ
significantly from predictions based on a single level of cache. Different miss penalties for each level
of the memory hierarchy as well as the TLB also play an important role in the effectiveness of cache-
friendly optimizations. These penalties vary among processors and cause large variations in the
effectiveness of cache performance optimizations.

The area of graph problems is fundamental in a wide variety of fields, most notably network
routing, distributed computing, and computer aided circuit design. Network routing in particular is a
rapidly growing problem with the explosion of the Internet. Routing tables are growing in size and the
frequency of updates is pushing the limits of current routers. Graph problems pose unique challenges
to improving cache performance due to their irregular data access patterns. These challenges often
cannot be handled using standard cache-friendly optimizations [9]. The focus of this research is to
develop methods of meeting these challenges. A suite of data intensive kernels or stressmarks
designed to stress the memory hierarchy is discussed in [21] & [22]. The transitive closure problem
discussed in this paper is from the stressmark suite.

In this paper we present a number of cache-friendly optimizations to the Floyd-Warshall algorithm,
Dijkstra’s algorithm, Prim’s algorithm, and graph matching. For the Floyd-Warshall algorithm we
present a cache-oblivious recursive implementation that achieves more than a 6x improvement over
the baseline implementation on three different architectures. We also show that by tuning the base
case for the recursion, we can further improve performance by up to 2x. We also show analysis and
discuss the impact of data layout on cache performance in the context of a tiled implementation of the
Floyd-Warshall algorithm. While these techniques are well known for dense linear algebra problems
such as matrix multiply, their application to transitive closure faces a significantly different set of
challenges. Note that today’s state of the art research compilers cannot generate these
implementations [9].

There are some natural combinations of implementation and data layout that decrease overhead
costs, such as index computation, and yield performance advantage. In this paper, we show that the
recursive and tiled implementations of the Floyd-Warshall algorithm perform roughly equal with
either the Morton layout or the Block Data Layout.

WallacJR
68

 4

For Dijkstra’s algorithm and Prim’s algorithm, to which tiling and recursion are not directly
applicable, we use a known cache-friendly graph representation. By using a data layout for the graph
representation that matches the access pattern we show up to a 2x improvement in execution time.

Finally, we use the techniques discussed with respect to the Floyd-Warshall algorithm and
Dijkstra’s algorithm to optimize cache performance for the problem of graph matching. The algorithm
we use is a primitive graph matching algorithm for bipartite graphs. We first apply the cache friendly
graph representation used for Dijkstra’s algorithm and Prim’s algorithm, since the data access pattern
to the graph is similar. We then use the idea of tiling to reduce the working set size. Performance
improvements were in the range of 2x to 3x depending on the density of the graph and the quality of
the partitioning done to accomplish tiling.

The remainder of this paper is organized as follows: In Section 2 we give the background needed
and briefly summarize some related work in the areas of cache optimization and compiler
optimizations. In Section 3 we discuss optimizing the Floyd-Warshall algorithm. In Section 4 we
discuss optimizing Dijkstra’s algorithm. In Section 5 we apply the optimizations discussed in Section
4 to Prim’s algorithm. In Section 6 we discuss applying the techniques to the problem of graph
matching. Finally, in Section 7 we draw conclusions.

2. Background and Related Work

In this section we give the background information required in our discussion of various

optimizations in Section 3 - 6. In Section 2.1 we give a brief outline of the graph algorithms. Those
readers comfortable with the algorithms can skip this. For more details of these algorithms see [7] or
[14]. In Section 2.2 we give some background on cache-based architectures and optimizing algorithms
for improved cache performance. In Section 2.3 we discuss some of the challenges that are faced in
making the transitive closure problem cache-friendly. We also discuss the model that we use to
analyze cache performance and the four architectures that we use for experimentation throughout the
paper. Finally, in Section 2.3 we give some information regarding other work in the fields of cache
analysis, cache-friendly optimizations, and compiler optimizations and how they relate to our work.

2.1. Overview of Key Graph Algorithms

For the sake of discussion, suppose we have a directed graph G with N vertices labeled 1 to N and

E edges. The Floyd-Warshall algorithm is a dynamic programming algorithm, which computes a
series of N, NxN matrices where Dk is the kth matrix and is defined as follows: Dk

(i,j) = shortest path
from vertex i to vertex j composed of the subset
of vertices labeled 1 to k. The matrix D0 is the
original cost matrix for the given graph G. We
can think of the algorithm as composed of N
steps. At each kth step, we compute Dk using the
data from Dk-1 in the manner shown below for
each (i, j)th value. Pseudo-code is given in
Figure 1.

()),(
1

),(
1

),(
1

),(,min jk
k

ki
k

ji
k

ji
k DDDD −−− +=

Dijkstra’s algorithm is designed to solve the
single-source shortest path problem. It does this
by repeatedly extracting from a priority queue Q

Floyd-Warshall(W)

1. n ← rows[W]
2. D(0) ← W
3. for k ← 1 to n
4. for i ← 1 to n
5. for j ← 1 to n
6. dij

(k) ← min(dij
(k-1), dik

(k-1) + dkj
(k-1))

7. return D(n)

Figure 1: Pseudo code for the Floyd-Warshall
algorithm

WallacJR
69

 5

the nearest vertex u to the source, given the distances
known thus far in the computation (Extract-Min
operation). Once this nearest vertex is selected, all
vertices v that neighbor u are updated with a new
distance from the source (Update operation). The
pseudo-code for the algorithm is given in Figure 2. The
optimal implementation of Dijkstra’s algorithm utilizes
the Fibonacci heap and has complexity O(N lg(N) + E),
although the Fibonacci heap may only be interesting in
theory due to large constant factors.

Prim’s algorithm for Minimum Spanning Tree is
very similar to Dijkstra’s algorithm for the single-source
shortest path problem. In both cases a root node or
source node is chosen and all other nodes reside
in the priority queue. Nodes are extracted using
an Extract-min operation and all neighbors of
the extracted vertex are updated. The
difference in Prim’s algorithm is that nodes are
updated with the weight of the edge from the
extracted node instead of the weight from the
source or root node.

For the sake of graph matching a subset M
of E is considered a matching if no vertex is
incident on more than one edge in M. A
matching is considered maximal if it is not a
subset of any other matching. A vertex is
considered free if no edge in M is incident upon it. Using these definitions a primitive matching
algorithm can be defined as follows [29]. Beginning at a free vertex use a breadth first search to find a
path P from that free vertex to another free vertex alternating between edges in M and edges not in M.
This is considered an augmenting path. Update the matching M by taking the symmetric difference of
the edge sets of M and P. The algorithm is complete when no augmenting path can be found. The
running time of this algorithm has been shown to be O(N*E). Pseudo-code is given in Figure 3. A
more detailed explanation of this primitive matching algorithm is given in [29].

2.2. Overview of Cache Based Architectures and Optimizing Algorithms for Improved Cache

Performance

It is a well-known fact that the speed of modern processors is increasing at a rate of roughly 60%

per year while the speed of memory is increasing at a rate of roughly 7% per year. This difference is
often referred to as the processor-memory gap, and it causes the latency to memory as seen by the
processor to increase significantly with each passing year. In order to hide this increasing latency,
caches have been designed to take advantage of locality of reference; the fact that once an element is
accessed there is a good chance that it and/or elements near will be accessed in the near future. The
cache is much smaller than main memory and is placed much closer to the processor in terms of
latency. Modern processors are including more levels of cache, each level larger in size and farther
from the processor in terms of latency.

Dijkstra’s(V)

1. S = Ø
2. Q = V[G]
3. while Q ≠ Ø
4. u = Extract-Min(Q)
5. S = S U {u}
6. for each vertex v ∈ Adj[u]
7. Update d[v]
8. return S

Figure 2: Pseudo code for Dijkstra’s
algorithm

Find_Match(G, M)

1. while (there exists an augmenting path)
2. {
3. increase |M| by one using the augmenting

path;
4. }

5. return M;

Figure 3: Pseudo code for primitive graph
matching algorithm

WallacJR
70

 6

Invariably the processor will access data that is not in the cache and this will result in a cache miss.
Cache misses can be categorized into one of three categories: cold misses, capacity misses, and
conflict misses. A cold miss occurs the first time a data element is accessed. These misses are
unavoidable. A capacity miss occurs if the working set of the application is larger than the cache.
These misses can be avoided by either decreasing the working set or increasing the size of the cache.
A conflict miss occurs if two or more data elements in the working set map to same place in the cache
and the replacement of one results in a subsequent cache miss when that element is accessed. This
type of miss can be avoided in a number of ways including improved data access patterns, improved
data layout, reducing the working set, etc [24].

Two other issues that should be addressed are cache pollution and TLB misses. TLB misses are
similar to cache misses except that they refer to misses in the Translation Look-aside Buffer. They can
be categorized the same as cache misses and reducing them follows a similar pattern. Cache pollution
is a somewhat different issue. This refers to when a cache line is brought into the cache and only a
small portion of it is used before it is pushed out of the cache. A large amount of cache pollution will
increase the bandwidth requirement of the application, even though the application is not utilizing
more data.

Based on this discussion, the keys to improve the performance of the memory system are as
follows: increase data reuse, decrease cache conflicts, and decrease cache pollution. The techniques
that we use to achieve these ends can be categorized as data layout optimizations and data access
pattern optimizations. In our data layout optimizations we attempt to match the data layout to an
existing data access pattern. For example, we use the Block Data Layout to match the access pattern
of a tiled algorithm (see Section 3), or we an adjacency array to match the access pattern of Dijkstra’s
algorithm and Prim’s algorithm (see Section 4 & 5). In our data access pattern optimizations, we
design both novel and trivial optimizations to the algorithm to improve the data access pattern. For
example, we implemented both a novel tiled implementation and a novel recursive implementation of
the Floyd-Warshall algorithm to improve the data access pattern.

A different approach to improving the performance of the cache is to design cache-oblivious
algorithms. This is explored in by Frigo, et. al. in [12]. In this article, the algorithms do not ignore the
presence of a cache, but rather they use recursion to improve performance regardless of the size or
organization of the cache. By doing this, they can improve the performance of the algorithm without
tuning the application to the specifics of the host machine. In our work we develop a cache-oblivious
implementation of the Floyd-Warshall algorithm. One difference between this work and ours is that
they assume a fully associative cache when developing and analyzing the techniques. For this reason,
they do not consider any data layout optimizations to avoid cache conflicts. They assume that at some
point in the recursion the problem will fit into the cache and all work done following this point will be
of optimal cost. In fact we show between 20% and 2x performance improvements by optimizing what
is done once we reach a problem size that fits into the cache.

2.3. Challenges

Transitive closure presents a very different set of challenges from those present in dense linear

algebra problems such as matrix multiply and FFT. In the Floyd-Warshall algorithm, the operations
involved are comparison and add operations. There are no floating-point operations as in matrix
multiply and FFT. We are also faced with data dependences that require us to update the entire NxN
array Dk before moving on to the (k+1)th step (see Figure 4). This data dependence from one kth loop
to the next eliminates the ability of any commercial or research compiler to improve data reuse. We

WallacJR
71

 7

have explored using the SUIF research compiler and found
that it cannot perform the optimizations discussed in Section 3
without user provided knowledge of the algorithm [9]. These
challenges mean that although the computational complexity
of the Floyd-Warshall algorithm is O(N3), equivalent to matrix
multiply, often transitive closure displays much longer running
times.

In Dijkstra’s algorithm and Prim’s algorithm, the largest
data structure is the graph representation. An optimal
representation, with respect to space, would be the adjacency-
list representation. However, this involves pointer chasing
when traversing the list. The priority queue has been highly
optimized by various groups over the years. Unfortunately,
the update operation is often excluded, as it is not necessary in
such algorithms as sorting. The asymptotically optimal implementation that considers the update
operation is the Fibonacci heap. Unfortunately this implementation includes large constant factors and
did not perform well in our experiments.

The primitive graph matching algorithm poses challenges that resemble challenges in both the
Floyd-Warshall algorithm and Dijkstra’s algorithm. As in the Floyd-Warshall algorithm, each breadth
first search to find an augmenting path could examine any part or the entire input graph. Recall that
the Floyd-Warshall algorithm requires updating the entire graph at each step. Unlike the Floyd-
Warshall algorithm, tiling and recursion cannot be applied, even with clever reordering, since the
search cannot be limited to a small part of the graph and still find a maximal matching for the entire
graph. We also have the situation as in Dijkstra’s algorithm where the size of the graph representation
can affect performance and, although optimal with respect to size, the adjacency list representation
could cause a degradation of cache performance due to pointer chasing when traversing the list.

The model that we use in this paper is that of a uniprocessor, cache-based system. We refer to the
cache closest to the processor as L1 with size C1, and subsequent levels as Li with size Ci. Throughout
this paper we refer to the amount of processor-memory traffic. This is defined as the amount of traffic
between the last level of the memory hierarchy that is smaller than the problem size and the first level
of the memory hierarchy that is larger than or equal to the problem size. In most cases we refer to
these as cache and memory respectively. Finally, we assume an internal TLB with a fixed number of
entries.

We use four different architectures for our experiments. The Pentium III Xeon running Windows
2000 is a 700 MHz, 4 processor shared memory machine with 4 GB of main memory. Each processor
has 32 KB of level-1 data cache and 1 MB of level-2 cache on-chip. The level-1 cache is 4-way set
associative with 32 B lines and the level-2 cache is 8-way set associative with 32 B lines. The
UltraSPARC III machine is a 750 MHz SUN Blade 1000 shared memory machine running Solaris 8.
It has 2 processors and 1 GB of main memory. Each processor has 64 KB of level-1 data cache and 8
MB of level-2 cache. The level-1 cache is 4-way set associative with 32 B lines and the level-2 cache
is direct mapped with 64 B lines. The MIPS machine is a 300 MHz R12000, 64 processor, shared
memory machine with 16 GB of main memory. Each processor has 32 KB of level-1 data cache and 8
MB of level-2 cache. The level-1 cache is 2-way set associative with 32 B lines and the level-2 cache
is direct mapped with 64 B lines. The Alpha 21264 is a 500 MHz uniprocessor machine with 512 MB
of main memory. It has 64 KB of level-1 data cache and 4 MB of level-2 cache. The level-1 cache is
2-way set associative with 64 B lines and the level-2 cache is direct mapped with 64 B lines. It also

kth row

kth column

(i,j)th element

Dk+1
(i,j) = min{Dk

(i,j), Dk
(i,k)+Dk

(k,j)}

Figure 4: kth iteration of outer loop
in Floyd-Warshall
Algorithm

WallacJR
72

 8

has an 8 element fully-associative victim cache. All experiments are run on a uniprocessor or on a
single node of a multiprocessor system. Unless otherwise specified simulations are performed using
the SimpleScalar simulator with a 16 KB, 4-way set associative level-1 data cache and a 256 KB, 8-
way set associative level-2 cache.

2.4. Related Work

A number of groups have done research in the area of cache performance analysis and

optimizations in recent years. Detailed cache models have been developed by Weikle, McKee, and
Wulf in [35] and Sen and Chatterjee in[31]. XOR-based data layouts to eliminate cache misses have
been explored by Valero and others in [13]. Data layouts for improving cache performance of
embedded processor applications have been explored in [10].

A number of papers have discussed the optimization of specific dense linear algebra problems with
respect to cache performance. Whaley and others discuss optimizing the widely used Basic Linear
Algebra Subroutines (BLAS) in [36]. Chatterjee, et. al. discuss layout optimizations for a suite of
dense matrix kernels in [5]. Frigo and others discuss the cache performance of cache oblivious
algorithms for matrix transpose, FFT, and sorting in [12]. Park and Prasanna discuss dynamic data
remapping to improve cache performance for the DFT in [23]. One characteristic that all these
problems share is a very regular memory accesses that are known at compile time.

Another area that has been studied is the area of compiler optimizations (see for example [27]).
Optimizing blocked algorithms has been extensively studied (see for example [18]). The SUIF
compiler framework includes a large set of libraries including libraries for performing data
dependence analysis and loop transformations. In this context, it is important to note that SUIF does
not handle the data dependences present in the Floyd-Warshall algorithm in a manner that improves
the processor-memory traffic. It will not perform the transformations discussed in Section 3 without
user intervention [9].

Although much of the focus of cache optimization has been on dense linear algebra problems,
there has been some work that focuses on irregular data structures. Chilimbi et. al. discusses making
pointer-based data structures cache-conscious in [6]. He focuses on providing structure layouts to
make tree structures cache-conscious. LaMarca and Ladner developed analytical models and showed
simulation results predicting the number of cache misses for the heap in [19]. However, the
predictions they made were for an isolated heap, and the model they used was the hold model, in
which the heap is static for the majority of operations. In our work, we consider Dijkstra’s algorithm
and Prim’s algorithm in which the heap is very dynamic. In both Dijkstra’s algorithm and Prim’s
algorithm O(N) Extract-Mins are performed and O(E) Updates are performed. Finally in [30], Sanders
discusses a highly optimized heap with respect to cache performance. He shows significant
performance improvement using his sequential heap. The sequential heap does support Insert and
Delete-min very efficiently, however the Update operation is not supported.

In the presence of the Update operation, the asymptotically optimal implementation of the priority
queue, with respect to time complexity, is the Fibonacci heap. This implementation performs
O(N*lg(N) + E) operations in both Dijkstra’s algorithm and Prim’s algorithm. In our experiments the
large constant factors present in the Fibonacci heap caused it to perform very poorly. For this reason,
we focus our work on the graph representation and the interaction between the graph representation
and the priority queue.

In [34],Venkataraman, et. al. present a tiled implementation of the Floyd-Warshall algorithm that
is essentially the same as the tiled implementation shown in this paper. In this paper, we consider a

WallacJR
73

 9

wider range of architectures and also analyze the cache performance with respect to processor memory
traffic. We also consider data layouts to avoid conflict misses in the cache, which is not discussed in
[34]. Due to the fact that we use a blocked data layout we are able to relax the constraint that the
blocking factor should be a multiple of the number of elements that fit into a cache line. This allows
us to use a larger block size and show more speedup. In [34], they derive an upper bound on
achievable speed-up of 2 for state-of-the-art architectures. Our optimizations lead to more than a 6x
improvement in performance on three different state-of-the-art architectures.

We have recently published work on the Floyd-Warshall algorithm in [25] that showed a 2x
improvement using the Unidirectional Space Time Representation. Compared with [25], this paper
represents a new approach to optimizing the Floyd-Warshall algorithm, namely recursion and tiling,
which gives up to an additional 3x improvement in execution time. Further, we expand our scope of
algorithms to include Dijkstra’s algorithm for the single source shortest path problem, Prim’s
algorithm for the minimum spanning tree problem, and graph matching.

3. Optimizing FW

In this section we address the challenges of the Floyd-Warshall algorithm. In Section 3.1 we

introduce and prove the correctness of a recursive implementation for the Floyd-Warshall algorithm.
We analyze the cache performance and show experimental results for this implementation compared
with the baseline. We also show that by tuning the recursive algorithm to the cache size, we can
improve its performance by up to 2x. In Section 3.2, we perform some analysis and discuss the impact
of data layout on cache performance in the context of a tiled implementation of the Floyd-Warshall
algorithm. Finally, in Section 3.3, we address the issue of data layout for both the tiled
implementation and the recursive implementation.

Throughout this section we make the following assumptions. We assume a directed graph with N
vertices and E edges. We assume the cache model described in Section 2.3, where Ci < N2 for some i
and the TLB size is much less than N. To experimentally validate our approaches and their analysis,
the actual problem sizes that we are working with are between 1024 and 4096 nodes (1024 ≤ N ≤
4096). Each data element is 8 bytes. Many processors currently on the market have in the range of 16
to 64 KB of level-1 cache and between 256 KB and 4 MB of level-2 cache. Many processors have a
TLB with approximately 64 entries and a page size of 4 to 8 KB.

In [15], it was shown that the lower bound on processor-memory traffic was Ω(N3/ C) for the
usual implementation of matrix multiply. By examining the data dependence graphs for both matrix
multiplication and the Floyd-Warshall algorithm, it can be shown that matrix multiplication reduces to
the Floyd-Warshall algorithm with respect to processor-memory traffic. Therefore, we have the
following:

Lemma 3.1: The lower bound on processor-memory traffic for the Floyd-Warshall algorithm,
given a fixed cache size C, is Ω(N3/ C), where N is the number of vertices in the input graph.

3.1. A Recursive Implementation of FW

As stated earlier, recursive implementations have recently been used to increase cache

performance. It was stated in [11] that recursive implementations perform automatic blocking at every
level of the memory hierarchy. To the authors’ knowledge, there does not exist a recursive
implementation of the Floyd-Warshall algorithm. The reason for this, is that the Floyd-Warshall
algorithm not only contains all the dependences present in ordinary matrix multiplication, but also

WallacJR
74

 10

additional dependences that can not be satisfied by
the simple recursive implementation of matrix
multiply. What is shown here is a novel recursive
implementation of the Floyd-Warshall algorithm.
We also prove the correctness of the
implementation and show analytically that it reaches
the asymptotically optimal amount of processor
memory traffic.

In order to design a recursive implementation of
the Floyd-Warshall algorithm, first examine the
standard implementation when applied to a 2x2
matrix. The standard implementation loops over the
variables k, i, and j from 1 to N. When the 2x2 case
is unrolled we have the code shown in Figure 5.
Notice that 8 calls are made to the min() operation
and each call requires 3 data values from the matrix.
This is converted into a recursive program by
replacing the call to the min() function with a
recursive call. Instead of passing 3 data values, we
pass 3 sub-matrices corresponding to quadrants of
the input matrix. This code is shown in Figure 6.
The initial call to the recursive algorithm passes the
entire input matrix as each argument. Subsequent
calls pass quadrants of their input arguments as
shown in Figure 6. The code similar to Figure 5
calling the min() operation is used as the base case
for when the input matrices are of size 2x2.

In order to complete the proof of the correctness
of the recursive implementation of the Floyd-
Warshall algorithm we need the following claim.

Claim 1: When computing the following
equation it is sufficient for the correctness of the
Floyd-Warshall algorithm that 1’ −≥ kk .

()),(
’

),(
’

),(
1

),(,min jk
k

ki
k

ji
k

ji
k DDDD += −

Proof:
By virtue of the min operation, the values used

for ’
),(

k
kiD & ’

),(
k

jkD will be ≤ to 1
),(

−k
kiD & 1

),(
−k

jkD .

Therefore, 1
),(

1
),(

’
),(

’
),(

−− +≤+ k
jk

k
ki

k
jk

k
ki DDDD , and k

jiD),(

using 1’ −≥ kk will be ≤ the value computed using
k-1. Since no values are used that are not
representative of paths, there exists a path from the
ith vertex to the jth vertex of cost given by Equation 1. Also, since the goal of the Floyd-Warshall
algorithm is to find the shortest path, Equation 1 will give the correct final result. �

As a final note, this does not claim that Equation 1 computes the shortest path from the ith vertex to
the jth vertex using vertices up to ’k . It merely computes a path from the ith vertex to the jth vertex that

Floyd-Warshall-2b2-Unrolled(W)

2. D(0) ← W

3. d11
(1) ← min(d11

(0), d11
(0) + d11

(0))
4. d12

(1) ← min(d12
(0), d11

(0) + d12
(0))

5. d21
(1) ← min(d21

(0), d21
(0) + d11

(0))
6. d22

(1) ← min(d22
(0), d21

(0) + d12
(0))

7. d22
(2) ← min(d22

(1), d22
(1) + d22

(1))
8. d21

(2) ← min(d21
(1), d22

(1) + d21
(1))

9. d12
(2) ← min(d12

(1), d12
(1) + d22

(1))
10. d11

(2) ← min(d11
(1), d12

(1) + d21
(1))

11. return D(2)

Figure 5: Pseudo code for the 2x2 unrolled
version of the Floyd-Warshall
algorithm

Floyd-Warshall-Recursive(A, B, C)

1. if (not base case) {
2. A11 ← FWR(A11, B11, C11);
3. A12 ← FWR(A12, B11, C12);
4. A21 ← FWR(A21, B21, C11);
5. A22 ← FWR(A22, B21, C12);
6. A22 ← FWR(A22, B22, C22);
7. A21 ← FWR(A21, B22, C21);
8. A12 ← FWR(A12, B12, C22);
9. A11 ← FWR(A11, B12, C21);
10. }
11. else {
12. /* run base case */
13. }

14. return A

Figure 6: Pseudo code for the recursive
version of the Floyd-Warshall
algorithm

1

WallacJR
75

 11

is less than or equal in cost to the shortest path from the ith vertex to the jth vertex using vertices up to
k-1.

Theorem 3.1: The recursive implementation of the Floyd-Warshall algorithm detailed above
satisfies the dependences given by Equation 1 and correctly computes the transitive closure of
the input graph.
Proof:
By definition the straightforward implementation of the Floyd-Warshall algorithm computes the

outer product of the input matrix with addition replaced by minimum and multiplication replaced by
addition. Subsequently, this is referred to as the FW outer product. Also, for the sake of simplicity,
assume that the problem size (N) is a power of 2.

Base case:
When the number of vertices is equal to 2, the recursive implementation is identical to the original

implementation of the Floyd-Warshall algorithm given in Figure 5.
Induction Step:
Assume that the recursive implementation correctly computes the FW outer product for problem

sizes up to N/2. Then, for a problem of size N, the 8 recursive calls shown in Figure 6 will be made.
The first call, step 1, passes the Northwest quadrant as each argument. By assumption, this will

correctly compute the Northwest quadrant of DN/2. In other words, the shortest path will be found
from i to j with all intermediate vertices in the set 1 to k, where i, j, and k are in the set 1 to N/2.

The second call, step 2, computes the Northeast quadrants of DN/2. By Claim 1, we can use the
data from the Northwest quadrant of DN/2 instead of Dk-1. This step finds the shortest path from i to j
with all intermediate vertices in the set 1 to k, where i and k are in the set 1 to N/2 and j is in the set
N/2 + 1 to N.

In the same fashion, the third and fourth calls complete the computation of DN/2 and after the first
four recursive calls we have correctly computed the shortest path from from i to j with all intermediate
vertices in the set 1 to k, where i and j are in the set 1 to N and k is in the set 1 to N/2.

The second set of four recursive calls works in the same way that the first set did and complete the
computation of DN, the last three using result from other quadrants of DN instead of Dk-1 by Claim 1.
In this way, we correctly compute the shortest path from i to j, and by induction the recursive
implementation of the Floyd-Warshall algorithm is correct for all N, where N is a power of 2. �

Theorem 3.2: The recursive implementation reduces the processor-memory traffic by a factor
of B , where ()CB Ο= .
Proof:
Note that the running time of this algorithm is given by

())(
2

*8 3N
N

TNT Θ=

=

Define the amount of processor memory traffic by the function D(x). Without considering cache,
the function behaves exactly as the running time.

())(
2

*8 3N
N

DND Θ=

=

Consider the problem after k recursive calls. At this point the problem size is N/2k. There exists
some k such that N/2k = ()CΟ , where C = cache size. For simplicity we set B = N/2k. At this point, all
data will fit in the cache and no further traffic will occur for recursive calls below this point.
Therefore:

2

3

WallacJR
76

 12

() ()2BOBD =
By combining Equation 3 and Equation 4 it can be shown that:

() ())(*
3

3

3

B

N
OBD

B

N
ND ==

Therefore, the processor-memory traffic is reduced by a factor of B. �
Theorem 3.3: The recursive implementation reduces the traffic between the ith and the (i-1)th
level of cache by a factor of Bi at each level of the memory hierarchy, where ()ii CB Ο= .

Proof:
Note first of all, that no tuning was assumed when calculating the amount of processor-memory

traffic in the proof of Theorem 3.2. Namely, Equation 5 holds for any N and any B where ()CB Ο= .
In order to prove Theorem 3.3, first consider the entire problem and the traffic between main

memory and the mth level of cache (size Cm). By Theorem 3.2, the traffic will be reduced by Bm where
()mm CB Ο= . Next consider each problem of size Bm and the traffic between the mth level of cache and

the (m-1)th level of cache (size Cm-1). By replacing N in Theorem 3.2 by Bm, it can be shown that this
traffic is reduced by a factor of Bm-1 where ()11 −− Ο= mm CB .

This simple extension of Theorem 3.2 can be done for each level of the memory hierarchy, and
therefore the processor-memory traffic between the ith and the (i-1)th level of cache will be reduced by
a factor of Bi, where ()ii CB Ο= . �

Finally, recall from Lemma 3.1 that the lower bound on processor-memory traffic for the Floyd-
Warshall algorithm is given by Ω(N3/ C), where C is the cache size. Also recall from Theorem 3.2
the upper bound on processor-memory traffic that was shown for the recursive implementation was
O(N3/B), where B2 = O(C). Given this information we have the following Theorem.

Theorem 3.4: Our recursive implementation is asymptotically optimal among all
implementations of the Floyd-Warshall algorithm with respect to processor-memory traffic.
As a final note in the recursive implementation, we show up to 2x improvement when we set the

base case such that the base case would utilize more of the cache closest to the processor. Once we
reached a problem size B, where B2 is on the order of the cache size, we execute a standard iterative
implementation of the Floyd-Warshall algorithm. This improvement varied from one machine to the
other and is due to the decrease in the overhead of recursion. It can be shown that the number of
recursive calls in the recursive algorithm is reduced by a factor of B3 when we stop the recursion at a
problem of size B. A comparison of full recursion and recursion stopped at a larger block size showed
a 30% improvement on the Pentium III and a 2x improvement on the UltraSPARC III.

In order to improve performance, B 2 must be chosen to be on the order of the L1 cache size. The
simplest and possibly the most accurate method of choosing B is to experiment with various tile sizes.
This is the method that the Automatically Tuned Linear Algebra Subroutines (ATLAS) project
employs [36]. However, it is beneficial to find an estimate of the optimal tile size. A block size
selection heuristic for finding this estimate is discussed in [25], and outlined here.

• Use the 2:1 rule of thumb from [24] to adjust the cache size to that of an equivalent 4-way set
associative cache. This minimizes conflict misses since our working set consists of 3 tiles of
data. Self-interference misses are eliminated by the data being in contiguous locations within
each tile and cross interference misses are eliminated by the associativity.

• Choose B by Equation 6, where d is the size of one element and C is the adjusted cache size.
This minimizes capacity misses.

5

4

WallacJR
77

 13

CdB =**3 2
The baseline we use for our experiments is a

straightforward implementation of the Floyd-Warshall
algorithm. It was shown in [25] that standard optimizations
yield limited performance increases on most machines. The
Simulation results in Table 1 for the recursive
implementation show a 30% decrease in level-1 cache
misses and a 2x decrease in level-2 cache misses for
problem sizes of 1024 and 2048. In order to verify the
improvements on real machines, we compare the recursive
implementation of the Floyd-Warshall algorithm with the
baseline. For these experiments the best block size was
found experimentally. The results show more than 10x
improvement in overall execution time on the MIPS,
roughly than 7x improvement on the Pentium III and the
Alpha, and more than 2x improvement on the UltraSPARC
III. These results are shown in Figure 7. Differences in
performance gains between machines are expected, due to
the wide variance in cache parameters and miss penalties.

3.2. A Tiled Implementation for FW

Compiler groups have used tiling to achieve higher data

reuse in looped code. Unfortunately, the data dependences
from one k-loop to the next in the Floyd-Warshall
algorithm make it impossible for current compilers,
including research compilers, to perform 3 levels of tiling
[9]. In order to tile the outermost loop we must cleverly
reorder the tiles in such a way that satisfies data dependences from one k-loop to the next as well as
within each k-loop.

Recall that Claim 1 stated that when computing Equation 1, it was sufficient that 1’ −≥ kk .
Consider a special case of Claim 1 when we restrict ’k such that 1’1 −+≤≤− Bkkk , where B is the
blocking factor. This special case leads to the following tiled implementation of the Floyd-Warshall
algorithm. This tiled implementation has also been derived in [34] using an alternate analysis. A brief
description of the algorithm is as follows. Tile the problem into BxB
tiles. During the kth block iteration, first update the (k,k)th tile, then the
remainder of the kth row and kth column, then the rest of the matrix.
Figure 8 shows an example matrix tiled into a 4x4 matrix of blocks.
Each block is of size BxB. During each outermost loop, we would
update first the black tile representing the (k,k)th tile, then the grey tiles,
then the white tiles. In this way we satisfy all dependences from each
kth loop to the next as well as all dependences within each kth loop.

3.2.1. Analysis. In [34], an upper bound for any cache optimized
Floyd-Warshall algorithm was shown, however, no formal analysis
with respect to traffic was shown for their tiled implementation. In fact

Data level-1 cache misses
N Baseline Recursive

1024 0.806 0.546
2048 6.442 4.362 109

Data level-2 cache misses

N Baseline Recursive
1024 0.537 0.280
2048 4.294 2.232 106

Table 1: Simulation result

Figure 8: Tiled
implementation of FW

6

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000

N

S
p

ee
d

u
p

Pentium UltraSPARC
Alpha MIPS

Figure 7: Speedup results for the
recursive implementation of
the Floyd-Warshall algorithm

WallacJR
78

 14

our results show speed-ups significantly larger than the upper bound shown in [34]. The following
analysis is performed for the tiled implementation in the context of the model discussed in Section 2.

Theorem 3.5: The proposed tiled implementation of the Floyd-Warshall algorithm reduces the
processor-memory traffic by a factor of B where B2 is on the order of the cache size.
Proof sketch: At each block we perform B3 operations.

There are N/B x N/B blocks in the array and we pass
through each block N/B times. This gives us a total of N3
operations. In order to process each block we require only
3*B2 elements. This gives us a total of N3/B total
processor-memory traffic. �

Given this upper bound on traffic for the tiled
implementation and the lower bound shown in Lemma 3.1,
we have the following.

Theorem 3.6: The proposed tiled implementation is
asymptotically optimal among all implementations of
the Floyd-Warshall algorithm with respect to processor-
memory traffic.

3.2.2. Optimizing the Tiled Implementation. It has been
shown by a number of groups that data layouts tuned to the
access pattern can significantly impact cache performance
and improve overall execution time. In order to match the
access pattern of the tiled implementation we use the Block
Data Layout (BDL). The BDL is a two level mapping that
maps a tile of data, instead of a row, into contiguous
memory. By setting the block size equal to the tile size in
the tiled computation, the data layout will exactly match the
data access pattern. By using this data layout we can also
relax the restriction on block size stated in [34] that the
block size should be a multiple of the number of elements in
a cache block.

As mentioned in Section 3.1, the best block size should
be found experimentally, and the block size selection
heuristic discussed in Section 3.1 can be used to give a
rough bound on the best block size. However, when
implementing the tiled implementation, it is also important
to note that the search space must take into account each
level of cache as well as the size of the TLB. Given these
various solutions for B the search space should be expanded
accordingly. In [34], only the level-1 cache is considered,
however, with an on-chip level-2 cache often the best block
size is larger than the level-1 cache. Table 2 shows the
result of comparing the tiled implementation using a row-
wise layout and the block size selection used in [34] with
the tiled implementation using the block data layout and

our block size selection. Simulation results show that the

Data level-1 cache misses
N Baseline Tiled

1024 0.806 0.542
2048 6.442 4.326 109

Data level-2 cache misses
N Baseline Tiled

1024 0.537 0.276
2048 4.294 2.195 106

Table 3: Simulation result

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000

N

S
p

ee
d

u
p

Pentium UltraSPARC
Alpha MIPS

Figure 9: Speedup results for the
tiled implementation of the
Floyd-Warshall algorithm

Data level-1 cache performance
 Row-wise BDL

Misses 0.312 0.276 109
Miss Rate 4.82% 4.28%

Data level-2 cache performance

 Row-wise BDL
Misses 91.43 7.45 106

Miss Rate 29.11% 2.68%

Execution time
 Row-wise BDL

SUN 283.72 201.38
P III 124.2 97.62 (sec)

N = 2048

Table 2: Comparison result

WallacJR
79

 15

block size selection used in [34] optimizes the level-1 cache misses, but incurs a level-2 cache miss
ratio of almost 30%. The Block Data Layout with a larger block size has roughly equal level-1 cache
performance and far better level-2 cache performance. The execution times for these implementations
show a 20% to 30% improvement by the Block Data Layout over the row-wise data layout.

A comparison for the tiled implementation using the Block Data Layout with the best compiler
optimized implementation was also performed. Simulation results for this are shown in Table 3.
These results show a 2x improvement in level-2 cache misses and a 30% improvement in level-1 cache
misses. Experimental results show a 10x improvement in execution time for the Alpha, better than 7x
improvement for the Pentium III and the MIPS and roughly a 3x improvement for the UltraSPARC III
(See Figure 9).

3.3. Data Layout Issues

It is also important to consider data layout when implementing

any algorithm. It has been shown by a number of groups that data
layouts tuned to the data access pattern of the algorithm can reduce
both TLB and cache misses (see for example [5], [23], [25]). In the
case of the recursive algorithm, the access pattern is matched by a
Z-Morton data layout. The Z-Morton ordering is a recursive layout
defined as follows: Divide the original matrix into 4 quadrants and
lay these tiles in memory in the order NW, NE, SW, SE.
Recursively divide each quadrant until a limiting condition is reach.
This smallest tile is typically laid out in either row or column major
fashion (see Figure 10). See [5] for a more formal definition of the
Morton ordering.

In the case of the tiled implementation, the Block Data Layout
(BDL) matches the access pattern. Recall from Section 3.2.2 that
the BDL is a two level mapping that maps a tile of data, instead of a
row, into contiguous memory. These blocks are laid out row-wise
in the matrix and data is laid out row-wise within the block (see
Figure 11). By setting the block size equal to the tile size in the
tiled computation, the data layout will exactly match the data access
pattern.

We experimented with both of these data layouts
for each of the implementations. The results are
shown in Tables 4 and 5. All of the execution times
were within 15% of each other with the Z-Morton data
layout winning slightly for the recursive
implementation and the BDL winning slightly for the
tiled implementation. The fact that the Z-Morton was
slightly better for the recursive implementation and
likewise the BDL for the tiled implementation was
exactly as expected, since they match the data access
pattern most closely. The closeness of the results is
mostly likely due to the fact that the majority of the
data reuse is within the final block. Since both of these

Recursive Implementation
N Morton

Layout
Block Data

Layout

2048 103.48 111.42
4096 820.45 878.89 (sec)

Tiled Implementation

N Morton
Layout

Block Data
Layout

2048 99.25 99.39
4096 779.53 780.41 (sec)

Table 4: Pentium III results

1 page/block

Blocks laid out
row-wise.

Elements laid
out row-wise
inside blocks.

√N

Figure 10: The Block Data
Layout

I II

III IV

1 2 5 6
3 4 7 8
9 10 13 14

16151211

17 18 21 22
19 20 23 24
25 26 29 30

32312827
49 50 53 54
51 52 55 56
57 58 61 62

64636059

33 34 37 38
35 36 39 40

41 42 45 46
48474443

Figure 11: The Morton Layout

WallacJR
80

 16

data layouts have the final block laid out in contiguous
memory locations, they perform equally well.

It is also important to note that the Z-Morton data
layout has a very complex index computation, which
can only be hidden in a recursive algorithm. The BDL
has a very simple index computation in comparison.
Therefore it is significant to show that for non-
recursive algorithms, the BDL performs just as well or
better, while avoiding the overhead of a complex index
computation.

4. Optimizing the Single-Source Shortest Path

Problem

Due to the structure of Dijkstra’s algorithm neither tiling nor recursion can be directly applied.

Much work has been done to generate cache friendly implementations of the heap, however, the
update operation has not been considered in great detail (see section 2.3). In the presence of the
update operation, the Fibonacci heap represents the
asymptotically optimal implementation with respect to time
complexity. Unfortunately, in the problem sizes being
considered, the performance of the Fibonacci heap was very
poor compared with even a straightforward implementation
of the heap.

As mentioned in Section 2, the largest data structure is
the graph representation. This structure will be of size
O(N+E), where E can be as large as N2 for dense graphs. In
contrast, the priority queue, the other data structure
involved, will be of size O(N). Also note that each element
in the graph representation will be accessed exactly once.
For each node extracted from the priority queue, the
corresponding adjacent nodes are read and updated. All
nodes will be extracted from the priority queue and no node
can be extracted more than once. Therefore, the traffic as a
result of the graph representation will be proportional to its
size and the amount of prefetching possible. For these
reasons, we focus on providing an optimization to the graph
representation based on the data access pattern.

In the context of the graph representation, we can take
advantage of two things. The first is prefetching. Modern
processors perform aggressive prefetching in order to hide
memory latencies. The second is to optimize at the cache
line level. In this case, a single miss would bring in multiple
elements that would subsequently be accessed and result in
cache hits. In this way cache pollution is minimized.

There are two commonly used graph representations.
The adjacency matrix is an NxN matrix, where the (i,j)th

0

0.5

1

1.5

2

2.5

3

0 0.5 1

Density

S
p

ee
d

u
p

Pentium, 2048 Pentium, 4096
UltraSPARC, 2048 UltraSPARC, 4096

Figure 12: Speedup results for
Dijkstra’s algorithm

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000

N

S
p

ee
d

u
p

Pentium UltraSPARC

Figure 13: Speedup results for
Dijkstra’s algorithm

Recursive Implementation
N Morton

Layout
Block Data

Layout

2048 307.33 311.26
4096 2460.53 2488.88 (sec)

Tiled Implementation

N Morton
Layout

Block Data
Layout

2048 278.48 271.35
4096 2248.20 2184.09 (sec)

Table 5: UltraSPARC III results

WallacJR
81

 17

element of the matrix is the cost from the ith node to the jth
node of the graph. This representation is of size O(N2). It
has the nice property that elements are accessed in a
contiguous fashion and therefore, cache pollution will be
minimized and prefetching will be maximized. However,
for sparse graphs, the size of this representation is
inefficient. The adjacency list representation is a pointer-
based representation where a list of adjacent nodes is stored for each node in the graph. Each node in
the list includes the cost of the edge from the given node to the adjacent node. This representation has
the property of being of optimal size for all graphs, namely O(N+E). However, the fact that it is
pointer based, leads to cache pollution and difficulties in prefetching. See [7] or [14] for more details
regarding these common graph representations.

Consider a simple combination of these two representations [28]. For each node in the graph, we
have an array of adjacent nodes. The size of each array is exactly the out-degree of the corresponding
node. There are simple methods to construct this representation when the out-degree is not known
until run time. For this representation, the elements at each point in the array look similar to the
elements stored in the adjacency list. Each element must
store both the cost of the path and the index of the adjacent
node. Since the size of each array is exactly the out-degree of
the corresponding node, the size of this representation is
O(N+E). This makes it optimal with respect to size. Also,
since the elements are stored in arrays and therefore in
contiguous memory locations, the cache pollution will be
minimized and prefetching will be maximized. Subsequently
this representation will be referred to as the adjacency array
representation. This graph representation is essentially the
same as a graph representation discussed in [28].

In order to demonstrate the performance improvements
using our graph representation, we performed simulations as
well as experiments on two different machines, the Pentium
III and UltraSPARC III, for Dijkstra’s algorithm. The
simulations show approximately 20% reduction in level-1
cache misses and a 2x reduction in the number of level-2
cache misses (see Table 6). This is due to the reduction in
cache pollution and increase in prefetching that was
predicted. Due to memory limitations, experiments for all
graph densities were only performed at small problem sizes,
namely 2K nodes and 4K nodes. These results demonstrate
improved performance using the adjacency array for all graph
densities and are shown in Figure 12. Experiments on larger
problem sizes (16K nodes up to 64K nodes) at a graph density
of 10% are shown in Figure 13 and again are limited by the
size of main memory. All of the results show a 2x
improvement for Dijkstra’s algorithm on the Pentium III and
a 20% improvement on the UltraSPARC III. This significant
difference in performance is due primarily to the difference in

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6

Graph density

E
xe

cu
tio

n
tim

e
(s

)

Linked-List
Adj. Array
FW-Tiled

Figure 15: Dijkstra’s algorithm vs.
best FW on UltraSPARC III, N = 4096

Figure 14: Dijkstra’s algorithm vs.
best FW on Pentium III, N = 2048

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25

Graph density

E
xe

cu
tio

n
tim

e
(s

)

Linked-List
Adj. Array
FW-Tiled

Cache misses
 Linked-List Adj. Array

Data level 1 7.04 5.62
Data level 2 3.59 1.82

(Input: 16K nodes, 0.1 density) (106)

Table 6: Simulation results

WallacJR
82

 18

the memory hierarchy of these two architectures.
A second comparison to observe is between the Floyd-Warshall algorithm and Dijkstra’s algorithm

for sparse graphs, i.e. edge densities less than 20%. For these graphs, Dijkstra’s algorithm is more
efficient for the all pairs shortest path problem. By using the adjacency array representation of the
graph in Dijkstra’s algorithm, the range of graphs over which Dijkstra’s algorithm outperforms the
Floyd-Warshall algorithm can be increased. Figures 14 & 15 show a comparison of the best Floyd-
Warshall algorithm with Dijkstra’s algorithm for sparse graphs. On the Pentium III, we were able to
increase the range for Dijkstra’s algorithm from densities up to 5% to densities up to 20%. On the
UltraSPARC III we increased the range from densities up to 20% to densities up to 30%.

5. Optimizing the Minimum Spanning Tree Problem

As mentioned in Section 2, Prim’s algorithm for

minimum spanning tree is very similar to Dijkstra’s
algorithm for the single source shortest path problem. In
fact they are identical with respect to the access pattern, the

difference being only in how the update operation is
performed. In Dijkstra’s algorithm nodes in the priority
queue are updated with their distance from the source node.
In Prim’s algorithm nodes are updated with the shortest
distance from any node already removed from the priority
queue. For this reason the optimizations applicable to
Dijkstra’s algorithm are also applicable to Prim’s algorithm.
Figures 16 & 17 show the result of applying the
optimization to the graph representation discussed in
Section 4 to Prim’s algorithm. Recall that this optimization
replaces the adjacency list graph representation with the
adjacency array graph representation. This representation
matches the streaming access that is made to the graph and
in this way minimizes cache pollution and maximizes the
prefetching ability of the processor.

Our results show a 2x improvement on the Pentium III
and 20% for the UltraSPARC III. This performance
improvement was shown in the smaller problem sizes of 2K
and 4K nodes where experiments were done for densities
ranging from 10% to 90% as well as the large problem sizes
of 16K nodes up to 64K nodes with densities of 10%.
Simulations were also performed to verify improved cache
performance. These results are shown in Table 7. They
show approximately a 20% reduction in the number of
level-1 cache misses and a 2x reduction in the number of
level-2 cache misses. As expected, all of the results are very
close to the results shown for Dijkstra’s algorithm.

6. Optimizing Bipartite Graph Matching

Cache misses
 Linked-List Adj. Array

Data level 1 7.19 5.77
Data level 2 3.59 1.82
(Input: 16K nodes, 0.1 density) (106)

Table 7: Simulation results

0

0.5

1

1.5

2

2.5

3

0 0.5 1

Density

S
p

ee
d

u
p

Pentium, 2048 Pentium, 4096
UltraSPARC, 2048 UltraSPARC, 4096

Figure 16: Speedup results for Prim’s
algorithm

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000

N

S
p

ee
d

u
p

Pentium UltraSPARC

Figure 17: Speedup results for Prim’s
algorithm

WallacJR
83

 19

In this section, we utilize the ideas and techniques developed in the previous sections to optimize
another basic graph algorithm, namely graph matching for bipartite graphs. As discussed in Section 2,
this algorithm shows similarities to Dijkstra’s algorithm with respect to memory access in each
iteration and therefore tiling and recursion cannot be easily applied.

The first optimization that is applied is to use the adjacency arrays instead of the adjacency list. In
order to find an augmenting path, a breadth first search is performed. The access pattern will then be
to access all adjacent nodes to the current node. This is the same access pattern as was displayed in
both Dijkstra’s and Prim’s algorithm.

The second optimization that is applied is intended to reduce the working set size as in tiling or
recursion. As mentioned above, neither tiling nor recursion can be directly applied. What can be done
is to use tiling to generate a good match as a starting point for the full problem. In this way the
amount of work done when examining the complete graph will be reduced. Furthermore, the work
done in the tiled steps will be cache friendly if the tiles are chosen appropriately. In order to
accomplish this, first divide the graph into sub-graphs, each of which fits into the cache and find the
local maximal matches. Then the local matches are combined to form a starting point for the original
algorithm. Finally, the algorithm is run on the complete graph, using the match already found as a
starting point, to find the maximal match.

The performance of this optimization is largely
dependant on the structure and density of the graph and the
partitioning chosen. Assuming a good partition, the local
maximal matches will be close to a global maximal match
for dense graphs due to the large number of edges present in
each sub-graph. For sparse graphs, it is difficult to find a
good local match and more work will be required at the
global level.

In order to improve the quality of the match at the local
level, a very simple partitioning algorithm is employed. A
basic description of this algorithm is as follows. Given a
bipartite graph, the goal is to partition the edges into two
groups such that the best match possible is found within
each group. In order to accomplish this, as many edges as
possible should have both end points in the same partition.
These edges are referred to as internal edges. Arbitrarily
partition the vertices into 4 equal partitions. Count the
number of edges between each pair of partitions. Combine
partitions into two partitions such that as many internal
edges are created as possible.

In order to support the quality of the optimization,
experiments were also performed for a graph in which a
worst possible graph partitioning was chosen, i.e. no
matches were found at the local level. For this case, the
optimized implementation showed only 10% performance
degradation. The majority of experimentation was
performed using randomly generated graphs in order to
average out the dependence on graph partitioning. The
random graphs were constructed by randomly choosing half

0

2

4

6

8

10

12

0 10000 20000 30000 40000

N

S
p

ee
d

-u
p

Pentium III UltraSPARC III

Figure 19: Best case speed-up
results for graph matching

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 0.1 0.2 0.3 0.4

Density

S
p

ee
d

-u
p

Pentium III UltraSPARC III

Figure 18: Speed-up vs. density
results for graph matching

WallacJR
84

 20

of the vertices to be in one partition of the bipartite graph.
Edges were then created from each vertex in the partition to
randomly chosen vertices not in the partition.

As expected, the performance improvement is highly
dependent on the density of the graph. This dependence can
be seen in Figure 18, which shows the speedup vs. graph
density. Results ranged from just over 2x for graphs of 10%
density to over 4x for graphs of 30% density. In this case,
the problem size was fixed at 8192 nodes and density was
limited to 30% by main memory. The best-case results are
shown in Figure 19. For these problems, we designed the
input graph such that the maximal matching is found in the
tiled phase and very little work is performed on the
complete graph. For these problems, results ranged from 3x
up to 10x. The most interesting results are those shown in
Figure 20. The input graph in this case was a randomly
generated graph and the basic graph partitioning algorithm
was used to improve the match found at the local level.
The results shown are the average over 10 different random
input graphs. The speedup shown is roughly 2x for all
problem sizes. We also performed simulations to
demonstrate cache performance for this case and the results
are shown in Table 8. Based on the number of access to the
level 1 cache, the optimized implementation is performing somewhat less work. This contributes
somewhat to the decrease in the number of misses shown. However, the miss rate is also reduced by
almost 3x, which indicates that the optimized implementation does improve cache performance
beyond the amount reduced by the decrease in work.

7. Conclusion

In the course of the research discussed in this paper, we have used the techniques of tiling,

recursion, and data layout optimization to show improved cache performance both analytically and
experimentally in the area of graph algorithms. The recursive implementation of the Floyd-Warshall
algorithm represents a novel cache-oblivious implementation. Using this implementation as well as a
tiled implementation, we have shown more than a 6x improvement in execution time on three different
architectures as well as analytically showing that both implementations are optimal with respect to
processor-memory traffic. We also showed significant performance improvements for Dijkstra’s
algorithm and Prim’s algorithm using a cache friendly graph representation. Finally, we applied both
the cache friendly graph representation and a tiling optimization to the problem of graph matching.
These optimizations showed a 2x to 3x improvement in execution time for randomly generated graphs
and up to 10x improvement for graphs well suited to our partitioning algorithm.

Tiling and recursion are also used as computation decomposition techniques for parallelization.
Good parallelized code should have minimal communication and sharing between computational
nodes, thus our pursuit of data locality also benefits parallelization. Our sequential FW
implementations and matching implementation can easily be transformed into parallel code.
Computation and data are already decomposed, what need to be added are computation and data

0

0.5

1

1.5

2

2.5

3

0 10000 20000 30000 40000

N

S
p

ee
d

-u
p

Pentium III UltraSPARC III

Figure 20: Average speed-up results
for graph matching

DL1 Cache Performance
 Baseline Optimized

Accesses 853 578
Misses 127 32

Miss Rate 14.86% 5.56%
(Input: 8K nodes, 0.1 density) (106)

Table 8: Simulation results

WallacJR
85

 21

distribution, synchronization and communication primitives. One of our future directions will be to
implement parallel versions of the Floyd-Warshall algorithm and matching algorithm based on the
work presented in this paper.

Another area for future work is the optimization of the priority queue in Dijkstra’s algorithm and
Prim’s algorithm. As mentioned, the Fibonacci heap is the asymptotically optimal implementation for
priority queue in the presence of the update operation, however, due to large constant factors, it
performed poorly in experiments.

This work is part of the Algorithms for Data IntensiVe Applications on Intelligent and Smart
MemORies (ADVISOR) Project at USC [1]. In this project we focus on developing algorithmic
design techniques for mapping applications to architectures. Through this we understand and create a
framework for application developers to exploit features of advanced architectures to achieve high
performance.

8. References

[1] ADVISOR Project. http://advisor.usc.edu/.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Company, Menlo Park, California, 1974.

[3] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. University of Wisconsin-
Madison Computer Sciences Department Technical Report #1342, June, 1997.

[4] J.B. Carter, W.C. Hsieh, L.B. Stoller, M.R. Swanson, L. Zhang, and S.A. McKee. Impulse:
Memory System Support for Scientific Applications. In the Journal of Scientific Programming, Vol.
7, No. 3-4, pp. 195-209, 1999.

[5] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear Array
Layouts for Hierarchical Memory Systems. ACM Symposium on Parallel Algorithms and
Architectures, 1999.

[6] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-Conscious Structure Layout. In Proc. of
ACM SIGPLAN Conference on Programming Language Design and Implementation, May 1999.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, Massachusetts, 1990.

[8] M. Cosnard, P. Quinton, Y. Robert, and M. Tchuente (editors). Parallel Algorithms and
Architectures. North Holland, 1986.

[9] P. Diniz. University of Southern California Information Sciences Institute, Personal
Communication, March, 2001.

[10] N. Dutt, P. Panda, and A. Nicolau. Data Organization for Improved Performance in Embedded
Processor Applications. ACM Transactions on Design Automation of Electronic Systems, Vol. 2,
Number 4, October 1997.

WallacJR
86

 22

[11] J. D. Frens and D. S. Wise. Auto-blocking matrix-multiplication or tracking BLAS3
performance from source code. In Proc. of the Sixth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, June 1997.

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious Algorithms. In
Proc. of 40th Annual Symposium on Foundations of Computer Science, 17-18, New York, NY, USA,
October, 1999.

[13] A. Gonzalez, M. Valero, N. Topham, and J. M. Parcerisa. Eliminating Cache Conflict Misses
through XOR-Based Placement Functions. In Proc. of 1997 International Conference on
Supercomputing, Vienne, Austria, July, 1997.

[14] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press,
Maryland, 1978.

[15] J. Hong and H. Kung. I/O Complexity: The Red Blue Pebble Game. In Proc. of ACM
Symposium on Theory of Computing, 1981.

[16] M. Kandemir, J. Ramanujam, and A. Choudhary. Improving Cache Locality by a Combination
of Loop and Data Transformations. IEEE Transactions on Computers, Vol. 48, No. 2, February, 1999.

[17] M. Kallahalla and P. J. Varman. Optimal Prefetching and Caching for Parallel I/O Systems. In
Proc. of 13th ACM Symposium on Parallel Algorithms and Architectures, 2001.

[18] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. In Proc. of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, Palo Alto, California, April 1991.

[19] A. LaMarca and R. E. Ladner. The Influence of Caches on the Performance of Heaps. ACM
Journal of Experimental Algorithmics, 1, 1996.

[20] R. Murphy and P. M. Kogge. The Characterization of Data Intensive Memory Workloads on
Distributed PIM Systems, Intelligent Memory Systems Workshop, ASPLOS-IX 2000, Boston, MA,
Nov. 12, 2000.

[21] J. Mussmano. Data-Intensive Systems Stressmark Suite, Version 1.0, Atlantic Aerospace
Electronics Corporation, August 24, 2000.

[22] J. Mussmano. DIS Benchmarking. DARPA Data Intensive Systems, Principal Investigator
Meeting Presentation, Santa Fe, NM, March 26, 2002.

[23] N. Park, D Kang, K Bondalapati, and V. K. Prasanna. Dynamic Data Layouts for Cache-
conscious Factorization of the DFT. In Proc. of International Parallel and Distributed Processing
Symposium, May 2000.

[24] D. A. Patterson and J. L. Hennessy. Computer Architecture A Quantitative Approach. 2nd Ed.,
Morgan Kaufmann Publishers, Inc., San Francisco, California, 1996.

WallacJR
87

 23

[25] M. Penner and V. K. Prasanna. Cache-Friendly Implementations of Transitive Closure. In Proc.
of International Conference on Parallel Architectures and Compiler Techniques, Barcelona, Spain,
September 2001.

[26] G. Rivera and C. Tseng. Data Transformations for Eliminating Conflict Misses. In Proceedings
of the 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation,
Montreal, Canada, June 1998.

[27] F. Rastello and Y. Robert. Loop Partitioning Versus Tiling for Cache-Based Multiprocessor. In
Proc. of International Conference Parallel and Distributed
Computing and Systems, Las Vegas, Nevada, 1998.

[28] S. Sahni. Data Structures, Algorithms, and Applications in Java. McGraw Hill, New York,
2000.

[29] H. A. B. Saip and C. L. Luchesi. Matching Algorithms for Bipartite Graphs. University of
Campinas Technical Report DCC-03/93, Brazil, March, 1993.

[30] P. Sanders. Fast Priority Queues for Cached Memory. ACM Journal of Experimental
Algorithmics, 5, 2000.

[31] S. Sen, S. Chatterjee. Towards a Theory of Cache-Efficient Algorithms. In Proc. of Symposium
on Discrete Algorithms, 2000.

[32] SPIRAL Project. http://www.ece.cmu.edu/~spiral/.

[33] P. Varman, Parallel I/O Systems. Handbook of Computer Engineering, CRC Press, 2001.

[34] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya. A Blocked All-Pairs Shortest-Paths
Algorithm. Scandinavian Workshop on Algorithms and Theory, Lecture Notes in Computer Science,
Vol. 1851, Editor: Magnus Halldorsson, Springer Verlag, 2000, 419-432.

[35] D. A. B. Weikle, S. A. McKee, and Wm.A. Wulf. Caches As Filters: A New Approach To
Cache Analysis. In Proc. of Grace Murray Hopper Conference, September 2000.

[36] R. C. Whaley and J. J. Dongarra. Automatically Tuned Linear Algebra Software. High
Performance Computing and Networking, November 1998.

[37] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B. Carter, W. C. Hsieh, and S. A.
McKee. The Impulse Memory Controller. IEEE Transactions on Computers, Special Issue on
Advances in High Performance Systems, November 2001.

WallacJR
88

 1

Cache-Friendly Implementations of Transitive Closure*

Michael Penner and Viktor K Prasanna
University of Southern California

(mipenner@usc.edu, prasanna@usc.edu)
http://advisor.usc.edu

Abstract
In this paper we show cache-friendly implementations of
the Floyd-Warshall algorithm for the All-Pairs Shortest-
Path problem. We first compare the best commercial
compiler optimizations available with standard cache-
friendly optimizations and a simple improvement
involving a block layout, which reduces TLB misses. We
show approximately 15% improvements using these
optimizations. We also develop a general representation,
the Unidirectional Space Time Representation, which can
be used to generate cache-friendly implementations for a
large class of algorithms. We show analytically and
experimentally that this representation can be used to
minimize level-1 and level-2 cache misses and TLB misses
and therefore exhibits the best overall performance.
Using this representation we show a 2x improvement in
performance with respect to the compiler optimized
implementation. Experiments were conducted on Pentium
III, Alpha, and MIPS R12000 machines using problem
sizes between 1024 and 2048 vertices. We used the
Simplescalar simulator to demonstrate improved cache
performance.

1. Introduction

The topic of cache performance has been well studied

in recent years. It has been clearly shown that the amount
of processor-memory traffic is the bottleneck for
achieving high performance in most applications [3, 17].
While the topic of cache performance has been well
studied, much of the focus has been on dense linear
algebra problems, such as matrix multiplication and FFT
[3, 10, 14, 21]. All of these problems possess very regular
access patterns that are known at compile time. In this
paper, we take a unique approach to this topic by focusing
on the fundamental irregular problem of transitive
closure.

Optimizing cache performance to achieve better

overall performance is a difficult problem. Modern
microprocessors are including deeper and deeper memory
hierarchies to hide the cost of cache misses. The
performance of these deep memory hierarchies has been
shown to differ significantly from predictions based on a
single level of cache [16]. Different miss penalties for
each level of the memory hierarchy as well as the TLB
also play an important role in the effectiveness of cache-
friendly optimizations. These miss penalties vary from
processor to processor and can cause large variations in
experimental results.

The All-Pairs Shortest-Path problem (hereafter referred
to as transitive closure) is a fundamental problem in a
wide variety of fields, most notably network routing and
distributed computing. Transitive closure, as an irregular
problem, poses unique challenges to improving cache
performance, challenges that often cannot be handled by
standard cache-friendly optimizations [8]. The Floyd-
Warshall algorithm involves updating N2 elements at each
step. Simple tiling cannot be used to optimize these steps
due to data dependencies from one step to the next.

In this paper we develop the Unidirectional Space
Time Representation (USTR) and show that using this
representation we can develop cache-friendly
implementations for a large class of algorithms. This
representation is very similar to the space-time
representation used in systolic array design, which also
deals with partitioning the space as we do [7]. However,
such systolic array designs do not have the added
challenge of dealing with cache conflicts and multiple
levels of memory hierarchy. We also show how this
representation can be used to uniquely face the challenges
posed by the transitive closure problem. Using this
representation we show up to a factor of 2 improvement
over a state of the art cache-friendly optimization,
including those available in a research compiler [12].

The remainder of this paper is organized as follows: In
Section 2 we give the background and briefly summarize
some related work in the areas of cache optimization and
compiler optimizations. In Section 3 we discuss each
optimization that we consider and give Simplescalar
results to substantiate our claims. In Section 4 we present

* Supported by the US DARPA Data Intensive Systems
Program under contract F33615-99-1-1483 monitored by
Wright Patterson Airforce Base and in part by an equipment
grant from Intel Corporation.

WallacJR
89

 2

experimental data gathered from the three machines we
used. In Section 5 we draw conclusions and gives some
direction for future work.

2. Background and Related Works

In this section we give the background information

required in our discussion of various optimizations in
Section 3. In Section 2.1 we give a brief outline of the
Floyd-Warshall algorithm. Those readers comfortable
with this algorithm can skip this. In Section 2.2 we
discuss some of the challenges that are faced in making
the transitive closure problem cache-friendly. Finally, in
Section 2.3 we give some information regarding other
work in the fields of cache analysis, cache-friendly
optimizations, and compiler optimizations and how they
relate to our work.

2.1. The Floyd-Warshall Algorithm

For the sake of discussion, suppose we have a directed

graph G with N vertices labeled 1 to N and E edges. The
Floyd-Warshall algorithm is a dynamic programming
algorithm, which computes a series of N, NxN matrices
where Dk is the kth matrix and is defined as follows: Dk

(i,j)
= shortest path from vertex i to vertex j composed of the
subset of vertices labeled 1 to k. The matrix D0 is the
original graph G. We can think of the algorithm as
composed of N steps. At each kth step, we compute Dk
using the data from Dk-1 in the manner shown in Figure
1[6].

2.2. Challenges

Transitive closure presents a very different set of

challenges from those present in dense linear algebra
problems such as matrix multiply and FFT. In the Floyd-
Warshall algorithm, the operations involved are
comparison and add operations. There are no floating-
point operations as in matrix multiply and FFT. We are

also faced with dependencies that require us to update the
entire NxN array Dk before moving on to the (k+1)th step.
This data dependency from one kth loop to the next
eliminates the ability of any commercial or research
compiler to improve data reuse. We have explored using
the research compiler SUIF to optimize transitive closure
and found that the optimization discussed in Section 3.1,
namely tiling of the i and j loops, is the best it can
perform without user provided knowledge of the
algorithm [8]. These challenges mean that although the
computational complexity of the Floyd-Warshall
algorithm is O(N3), equivalent to matrix multiply, often
transitive closure displays much longer running times.

2.3. Related Work

A number of groups have done research in the area of

cache performance analysis in implementing algorithms
in recent years. Detailed cache models have been
developed by Weikle, McKee, and Wulf in [20] and Sen
and Chatterjee in [16]. Instead of eliminating cache
misses, some groups develop methods to tolerate these
misses. Multithreading has been discussed as one method
of accomplishing this. Kwak and others discuss the
effects of multithreading on cache performance in [11].

A number of papers have discussed the optimization of
specific problems with respect to cache performance. The
majority of these problems are in the area of dense linear
algebra problems. Whaley and others discuss optimizing
the widely used Basic Linear Algebra Subroutines
(BLAS) in [21]. Chatterjee and Sen discuss a cache
efficient matrix transpose in [4]. Frigo and others discuss
the cache performance of cache oblivious algorithms for
matrix transpose, FFT, and sorting in [9]. Park and
Prasanna discuss dynamic data remapping to improve
cache performance for the DFT in [13]. One
characteristic that these problems share is a very regular
memory accesses that are known at compile time.

Another area that has been studied is the area of
compiler optimizations (see for example [15, 16, 26]).
Optimizing blocked algorithms has been extensively
studied (see for example [12]). The SUIF compiler
framework includes libraries for performing data
dependency analysis and loop transformations among
other things. In this context, it is important to note that
SUIF does not handle the data dependencies present in the
Floyd-Warshall algorithm in a manner that improves the
processor-memory traffic. It will perform the tiling
optimization discussed in Section 3.1; however, it will not
perform the transformation discussed in Section 3.4
without user intervention [8].

Although much of the focus of cache optimization has
been on dense linear algebra problems, there has been
some work that focuses on irregular data structures.
Chilimbi discusses making pointer-based data structures

i

j
k

Dk
(i,j) = min[Dk-1

(i,j) , Dk-1
(i,k)+Dk-1

(k,j)]

Figure 1: kth step of Floyd-Warshall
Algorithm

WallacJR
90

 3

cache-conscious in [5]. He focuses on providing structure
layouts and structure definitions to make tree structures
cache-conscious. Gao has also looked at optimizations
for a heap data structures in [18]. The difference between
this work and ours is that we focus on optimizing an
algorithm instead of a data structure.

3. Cache-Friendly Optimizations

In this section we explore three different optimizations

of transitive closure. In Section 3.1, we show the usual
implementation of the Floyd-Warshall algorithm, as well
as a standard compiler technique for optimizing loop
nests. We use these throughout the paper as our baseline.
Section 3.1 also includes many of the definitions and
assumptions that we use throughout Section 3 for our
analysis. In Section 3.2 we show a data layout
optimization that is used to compliment the compiler
optimization. Finally, in Section 3.3 we introduce the
Unidirectional Space Time Representation and how it can
be used to generate cache-friendly optimizations.
Throughout the sections we use result from the
Simplescalar simulator to verify our analytical analysis.
We show actual running times of the optimizations on our
three machines in Section 4.

3.1. Standard Optimization of the Floyd-

Warshall Algorithm (Baseline
Implementation)

As stated earlier, improving cache performance has

been well studied in recent years in the area of dense
linear algebra problems. Most of the optimizations
developed deal with dense array structures. This dense
array is present in the standard Floyd-Warshall algorithm.
The purpose of this section is to introduce and analyze the
baseline implementation as well as a fairly standard
optimizations to improve cache performance. This
optimizations produced less than 20% improvement over
the baseline. The baseline that we use throughout our
discussion is a usual implementation that is compiled
using the state of the art compiler optimizations available.
The compilers we used for our experiments were GNU
C++ (gcc) and Microsoft Visual C++ (MS VC++). We
have verified that these compilers do not do loop
transformation or copying. They do perform such
optimizations as inline functions and code reordering to
hide miss latency.

In order to simplify the analysis we make a few
assumptions. Suppose we have a graph with N vertices.
The size of the adjacency matrix is then N2. We are
interested in optimizing performance as the problem size
increases; the problem and intermediate data do not fit in
the cache. We assume that the cache size is less than N2
and the TLB is much smaller than N. We define

processor-memory traffic as the traffic between the last
level of the memory hierarchy that cannot contain the
problem size (referred to as the cache) and the first level
of the memory hierarchy that can contain the problem
data (referred to as memory). On most traditional
architectures, this would be between the level-2 cache and
main memory. We also assume that the problem fits into
some level of the main memory hierarchy. To
experimentally validate our approaches and their analysis,
the actual problem sizes that we are working with are
between 1024 and 2048 nodes (1024 ≤ N ≤ 2048). Each
data element is 8 bytes. Many processors currently on the
market have in the range of 16 to 64 KB of level-1 cache
and between 256 KB and 4 MB of level-2 cache. Many
processors have a TLB with approximately 64 entries and
a page size of 4 to 8KB. All of these parameters match
closely with our assumptions.

Let us first examine the usual implementation of the
Floyd-Warshall algorithm. The basic step (kth loop) in
this algorithm is to take the outer product of the kth row
and the kth column and update the entire matrix. We
assume the matrix is laid out in row major order. By
definition of the algorithm then we are going to update N2
elements in each kth loop. Since our cache is strictly less
than N2, this will generate Θ(N3) total processor-memory
traffic. Now suppose we want to update the entire ith row
during some kth loop. In the worst case, this could conflict
exactly with the kth row of the matrix and cause an extra
O(N) conflict misses for that kth loop. We also want to
consider TLB misses. In order to understand the TLB
issues, suppose our page size is N*l for some small l,
possibly less than 1.* Then the adjacency matrix sits
inside N/l different pages. Each one of these must be
accessed during every kth loop and all of them will not fit
into the TLB. So, we will generate O(N/l) TLB misses

* The Pentium III page size is 4 KB = 512 * d, where d is

our data element size. The Alpha page size is 8 KB =
1024 * d.

���
���
���
���
���
���
���
���

kth row

kth column
(i,j)th element

Dk+1
(i,j) = min{Dk

(i,j), Dk
(i,k)+Dk

(k,j)}

Figure 2: Basic step (kth loop) in
Floyd-Warshall algorithm

WallacJR
91

WallacJR

 4

during each kth loop. Therefore the total number of TLB
misses will be O(N2/l).

The first optimization that we examine is a basic tiling
approach combined with copying (Figure 3). Tiling is a
loop transformation that attempts to reduce the working
set size. It solves many small problems and combines the
solutions into the solution for the original problem.
Copying is used to reduce conflict misses within the tile
by placing all the elements in contiguous memory
locations. Due to data dependencies, the Floyd-Warshall
algorithm can only be tiled for the i and j loops. In order
to find the optimal tile size for each architecture, it is best
to experiment with various tile sizes (see Section 4). For
the sake of analysis, suppose that the tile size is βxβ,
where β2 < cache size. Since the dependencies still
require updating all N2 elements in each kth loop (1 ≤ k ≤
N), as in the original case, we will have O(N3) overall
processor-memory traffic. However, the tiled
computation does reduce the working set size. Where we
used to have an extra O(N) traffic when the ith row
conflicted with the kth row, there is now an extra O(β)
traffic when a row of the tile conflicts with the kth row.
This reduction in conflict misses can be seen in the level-
1 cache misses from Simplescalar (see Table 1).

In order to understand the number of TLB misses,
examine the problem of solving a single tile. Since the
elements are laid out row-wise for the matrix, each row is
on a different page, recall that page size is approximately
N. This is true even with copying, since the tile in the
original matrix must be accessed in order to copy it into
contiguous locations. Therefore, this requires β + 1 pages
to update each tile. For the baseline, the TLB working set
is O(1), exactly 2 rows of the matrix. If the TLB is
smaller than β + 1, we will have O(β) misses per tile, and
O(N3/β) total TLB misses. In fact, this increase in TLB
misses can be seen in our results from Simplescalar (see
Table 1). In our experiments, this optimization gave
performance improvements ranging from 0% to 40% over
the baseline.

3.2. Data Layout Optimization of the Floyd-

Warshall Algorithm

The first optimization that we propose is a change in

data layout. The theory behind this change in data layout
is that in order to show spatial locality, and therefore good
cache performance, the data layout must match the data
access pattern. In our tiled optimization, the access is
naturally tile-by-tile, row-wise through the matrix.
Within each tile, the data is also accessed row-wise. In
order to match this data access pattern, the Block Data
Layout (BDL) should be used. The BDL is a two level
mapping that maps a tile of data, instead of a row, into
contiguous memory. These blocks are laid out row-wise
in the matrix and data is laid out row-wise within the
block (see Figure 4). When the block size is equal to the
tile size in the tiled computation, the data layout will
exactly match the data access pattern. Also note that with
this layout, copying is not necessary, since the elements in
the tile are already in contiguous memory locations.

The analysis of this optimization is very similar to that
of the tiled and copied optimization. Since the
dependencies still require updating the entire matrix in
each kth loop, the total processor-memory traffic will be
O(N3). However, the working set is reduced by the tiled
computation and the level-1 cache misses are reduced as
shown in Table 2. This is the same phenomenon that was
shown in the tiling with copying optimization. Since each
tile is in contiguous memory locations and is equal to
O(1) TLB pages, this only requires O(1) TLB misses for
each tile of computation. This gives a total of O(N3/β2)
TLB misses and a working set of O(1) pages. Recall that
in the usual implementation, the working set was a row of
the adjacency matrix. This was laid out in contiguous
memory locations, so the working set of pages is O(1). In

��
��
��
��
��
��
��
��
��

kth row

kth column

copied
(i,j) tile

β

β

Figure 3: Tiling plus copying for

Floyd-Warshall algorithm

Data level-1 cache misses
N Baseline Tiled, ββββ=32

1024 0.81 0.63
1536 2.72 2.13

(billions)

Data TLB misses
N Baseline Tiled, ββββ=32

1024 5.29 86.71
1536 17.76 218.08

(millions)

Table 1: Simplescalar results for tiled and
copied Floyd-Warshall algorithm.
Architectural parameters used were from
Pentium III architecture; see Section 4 for
specific parameter values.

WallacJR
92

 5

the tiled version, we showed the working set of pages was
O(β). This difference can be seen in the Simplescalar
simulation results for TLB misses (see Table 2). The
experimental results for the BDL optimization showed
performance increases in the range of 5% to 15% on the
Pentium III and approximately 40% on the Alpha (see
Section 4)

3.3. The Unidirectional Space Time

Representation and Cache-Friendly
Algorithms

In this Section we introduce the Unidirectional Space-

Time Representation (USTR). We show that this
representation can be used to generate cache-friendly
implementations of many algorithms. In Section 3.3.1 we
introduce the basic idea of a space-time representation
and the difference between this representation and the
iteration space. In Section 3.3.2 we show how the USTR
can be used to generate cache-friendly implementations.
We also show analytical bounds on processor-memory
traffic and show a technique to find an optimal partition
size. Finally, in Section 3.3.3 we show one instance of
how the USTR can be applied to transitive closure using
results from Simplescalar to illustrate performance gains.
Running times for this optimization can be found in
Section 4. Throughout this Section we use matrix
multiply as an example application; however, these
techniques can be applied to many algorithms. For the
sake of clarity we will skip a formal definition of the
USTR and focus on the key ideas.

3.3.1. Unidirectional Space Time Representation. Let
us first explain what we mean by a space-time
representation. Similar notions have been used by the
systolic array designs and VLSI signal processing
community ([7, 19]). Consider a problem in which the
result is an NxN matrix. We divide the problem in space
by representing the computation required to calculate each
result as a computational element (CE) in an NxN array,

for example, the multiply-add operations required in a
matrix multiply. Referring to Figure 6, each circle in the
space represents the computation required for the (i,j)th
result. The notion of time comes from the data flowing
through this NxN array of CEs. Referring to Figure 6
again, the data A would flow row-wise into the array from
the left and the data B would flow column-wise into the
array from the top. As the data flows through the array,
each element does some simple computation on the data
inside it and passes on the data. Once the data has flowed
completely through the array, the (i,j) result lies in the
corresponding CE. The space-time representation is
much like a systolic array design. If each CE were
viewed as a processor, the result would be an NxN
systolic array [19]. The distinction that we add is the
notion of unidirectional data flow. We only allow data to
flow in the forward direction, either down or to the right.
This allows us to generate a cache-friendly
implementation.

Consider, for example, the simple systolic array
implementation for multiplying 2, 4x4 matrices (see
Figure 5). During t=1, the CE (1,1) receives A11 from the
left and B11 from the right and computes C11 = A11*B11.
During times t=2, 3, & 4, the CE will receive A1t and B1t,
and will compute C11 = A1t*B1t + C11. In general, CE (i,j)
will receive data elements Aik and Bkj at time [(i-1) + (j-1)
+ k] and will compute Cij = Cij + Aik*Bkj. The
computation will be complete at time t=12, when element
(4,4) updates C44=C44 + A44*B44 [19].

The key difference between this and the iteration space
is the idea of scheduling operations in space. The
iteration space actually deals only with scheduling
operations in time, whereas the USTR represents
operations divided in space as well as time [15]. As we
will show in the next section, this fact allows us to
generate implementations that are cache-friendly.

�������������
�������������
�������������

�������������
�������������
�������������

������������
������������
������������

����������������
����������������
����������������

1 page/block

Blocks laid out
row-wise.

Elements laid
out row-wise
inside blocks.

√N
Data level-1 cache misses
N Baseline BDL

1024 0.81 0.58
1536 2.72 1.95

(billions)

Data TLB misses
N Baseline Tiled BDL

1024 5.29 86.71 5.80
1536 17.76 218.08 19.20

(millions)

Figure 4: The Block Data Layout Table 2: Simplescalar results for BDL
optimization of Floyd-Warshall algorithm.
Architectural parameters used were from
Pentium III architecture; see Section 4 for
specific parameter values.

WallacJR
93

 6

In summary, what we mean by a USTR is an NxN
array of computational elements (CEs) where each
element performs O(N) computations. Thus, when
implemented on a uniprocessor the algorithm requires
O(N3) time. If the CEs are scheduled in a row-wise
fashion, this would produce the baseline implementation
cooresponding with a usual 3-level perfectly nested loop.

3.3.2. From the USTR to a Cache-Friendly
Implementation. In order to predict cache performance
when we implement the above representation on a
uniprocessor, we need to make a few assumptions
regarding the CEs. We first assume that a fixed amount
of computation is done at each CE during each time and
the amount is relatively small. For the sake of simplicity,
we also assume that each CE is performing exactly the
same computation. We refer to this as a single operation.
In the matrix multiply example each element performed
one multiply and add during each time unit. Finally, we
assume that the local memory required within each CE is
constant, for example each CE in the matrix multiply

array required local storage for one accumulated value.
These assumptions are common to most systolic array
designs. Note that the cache performance analysis does
not depend on the type of operations being performed,
making it applicable to any algorithm expressed in a
USTR. All assumptions regarding cache size and
problem size from Section 3.1 still hold. Recall that data
flow has been limited to the forward direction, i.e. either
down or to the right. Again, for the sake of clarity we will
skip formal proofs and focus on the key ideas.

Examining a single CE, note that the computation
required is N operations. In the matrix multiply example,
each CE required four operations to compute the final
result. Each operation requires 2 new data elements as
well as any locally stored values. This will subsequently
result in 2*N processor-memory traffic on a traditional
architecture. In a usual implementation, each CE could be
executed in a row-wise fashion. For the matrix multiply
USTR, this corresponds to the usual 3-level nested loop
code (without tiling). Based on the above calculation, this
would result in Θ(N3) processor-memory traffic.

Now let us define a tiled order of computations as
follows. First tile the array of CEs into tiles of size βxβ
(see Figure 6). Within each tile, operate on CEs in a row-
wise fashion. Within each CE, process β elements of the
row and column that will pass through it before moving
on to the next CE. We define a pass through a tile as
executing each CE for β elements. Repeatedly pass
through each CE in the tile until all input data has been
processed. Returning to the matrix multiply example, this
implementation would match with a 6-level nested loop
implementation of matrix multiply.

Another method of tiling would be to first tile the array
of CEs into tiles of size βxβ. Within each tile, instead of
processing β elements at each CE at a time, process the
entire array for t=1, then process it for t=2, and so for t≤β.
This then would be defined as a single pass through the
tile.

Between each CE and between tiles we place a First-
In-First-Out (FIFO) buffer. When the adjacent CE or tile
begins, it receives data from this buffer in the same
manner as if all CEs were processing data simultaneously.

As we saw in Section 3.2, it is also beneficial to match
our data layout to the data access pattern. Recall that we
demonstrated large improvements in TLB misses when
we used the BDL on a tiled access pattern compared with
a row-wise data layout for the same access pattern. Since
the access to the input data in the USTR is also in a tiled
fashion, it is beneficial to again use the BDL to minimize
TLB misses. Throughout this section we assume a BDL
when implementing the USTR to eliminate self
interference misses and minimize cross interference
misses between blocks of data.

When the computation is tiled as shown earlier in
Figure 6, we can take advantage of data locality and

B11

B21 B12

B13

B14

B22B31

B41 B32B23

…

A41

A32 A31

A21

A11
A22A23

A14 A13A12

…

Figure 5: USTR for 4x4 matrix multiply

A ⊗ B for N x N matrices

B11

B12 B1N

A11
A12

A1N

= computation for result (i,j)

β

β

…

…

…

…

i

j

Figure 6: Unidirectional Space
Time Representation.

Note: ⊗⊗⊗⊗ refers to a generic
matrix operation.

WallacJR
94

 7

reduce the processor-memory traffic. Examining the first
pass through a tile of the array of CEs, each CE performs
β operations, requiring the first β data elements of one
row and one column of the input as well as its locally
stored value. Note that the CE directly below it requires
exactly the same column elements and β data elements
from the next row. When this is extended to the entire
tile, it requires 2*β 2 data elements of the input, β 2 locally
stored values, and performs β 3 operations. In order to
complete each tile, it must be passed through N/β times.
This requires 2*(N/β)*β 2 data elements of the input, β 2
locally stored values, and performs (N/β)*β 3 total
operations. From this discussion we have the following
theorem.

Theorem 1: Given an USTR of an algorithm,
we can reduce the amount of processor-memory
traffic by a factor of β, where cache size is O(β2),
compared with a baseline implementation.

Proof sketch: Each pass through a tile requires 2*β 2
elements of the input and β 2 locally stored elements and
performs β 3 operations. If we choose β 2 to be O(C)
where C is the cache size, all locally stored values will
reside in the cache. Also, the current 2*β 2 tiles of the
input will remain in the cache for the duration of the pass.
Each pass through a tile then results in 2*β 2 processor-
memory traffic. There is a total of (N/β)x(N/β) tiles.
Each tile requires N/β passes. The total number of
operations is given by:

33*** NNNN =

 β
βββ

The total amount of processor-memory traffic is given by:

=

β

β
βββ

3
2 *22*** NNNN

Therefore the processor-memory traffic is reduced by a
factor of β.

In order to implement the USTR we must also consider
the schedule for computing each tile. Recall from Figure
6 that in the USTR all data flow is in the forward
direction. Therefore, in order to satisfy these data
dependencies, a valid schedule will have the following
characteristic:

• When computing tile (i,j), all tiles (k,l), where {k ≤ i
and l < j} or {k < i and l ≤ j}, must have already been
computed; where the tile (1,1) is the upper left most
tile.

For example, a row-wise schedule of tiles would satisfy
this requirement. One could also use a more complex
schedule such as a wavefront.

When faced with a multi-level memory hierarchy, one
could consider a multi-level tiling method for both the
schedule and the data layout in the USTR. Consider a

multi-level tiling method such as the method shown in
Figure 7. In this method β would be chosen to minimize
the traffic between level-1 and level-2 cache. This is
exactly what we have shown thus far in our discussion.
The traffic between the level-2 cache and the next level of
the memory hierarchy would then be minimized by
choosing β’ such that β’ 2 is equal to the size of the level-2
cache. We could use a simple row-wise layout of tiles
within this larger β’xβ’ tile. This could be repeated until
we reach a level that is larger than our problem size.
Using this multi-level tiling method, we can gain an
improvement of ic in traffic at each level of the
memory hierarchy, where ci is the size of the memory at
the corresponding level of the memory hierarchy. In this
case the schedule of βxβ tiles and β’x β’ tiles becomes
important. In order to take advantage of the most data
reuse possible the schedule of operations must match the
data layout while still satisfying the unidirectional data
flow properties of the USTR.

One of the key factors in Theorem 1 holding is that β 2
is chosen to be on the order of cache size. The simplest
and possibly the most accurate method of choosing β is to
experiment with various tile sizes. This is the method that
the Automatically Tuned Linear Algebra Subroutines
(ATLAS) project employs [21]. However, it is beneficial
to find an estimate of the optimal tile size. The following
is a method to generate approximate bounds on the
optimal tile size.

Note that the working set is composed of 3 βxβ tiles of
data. We can classify cache misses into three categories;
compulsory misses, conflict misses, and capacity misses.
Compulsory misses, by definition, cannot be avoided.
Here we provide a heuristic for choosing a tile size, such
that conflict and capacity misses are minimized.

• Use the 2:1 rule of thumb from [14] (see below) to
adjust the cache size to that of an equivalent 4-way
set associative cache. This minimizes conflict
misses since our working set consists of 3
contiguous tiles of data. Self interference misses

������������
������������
������������

β

…
…

β’

…

…

Figure 7: Multi-level tiling for USTR

schedule and/or layout.

WallacJR
95

 8

are eliminated by the data being in contiguous
locations and cross interference misses are
eliminated by the associativity.

• Choose β by Equation 1, where d is the size of one
element and C is the adjusted cache size. This
minimizes capacity misses.

 Cd =**3 2β
The 2:1 rule of thumb states that a direct mapped cache

of size C has approximately the same miss ratio as a 2-
way set associative cache of size C/2. Based on the
results published in [14] this rule of thumb holds loosely
for any k and 2*k way set associative caches. For
example, if the cache is a 2-way set associative cache of
size C, the equation to solve would be 3*β2*d = C/2.
Also note that this does not calculate an exact value for
the optimal β, it simply finds a loose bound on the desired
search space.

It is also important to note that the search space must
take into account each level of cache as well as the size of
the TLB. Given these various solutions for β the best tile
size can be found experimentally. In order to validate this
method, calculate the best tile size for the Pentium III
machine based on the level-2 cache. The level-2 cache is
a 256 KB, 8-way set associative cache. Use the 2:1 rule
of thumb and base the calculations on a 512 KB, 4-way
set associative cache. The element size d is 8 bytes.
Solving Equation 1 gives β = 147.8. Experimentally, the
best tile size for the USTR optimization of transitive
closure on our Pentium III was found to be β = 140.

3.3.3. A Cache-Friendly Algorithm for Transitive
Closure. As we stated in Section 3.4.1, the USTR is
similar to notations used in the systolic array and VLSI
signal processing communities. A standard systolic array
implementation of the Floyd-Warshall algorithm is as
follows [19].

• Given a graph with N vertices in the adjacency
matrix representation, feed the matrix A into an
NxN systolic array of processing elements (PEs)
both row-wise from the top and column-wise from
the left as shown in Figure 8.

• At each PE (i,j), update the local variable C(i,j) by
the following formula:

),min(),(),(),(),(jkkijiji AACC +=
Where A(i,k) is the value received from the top and
A(k,j) is the value received from the left.

• If i=k, pass the value C(i,j) down, otherwise pass
A(k,j) down. If j=k, pass the value C(i,j) to the right,
otherwise pass A(i,k) to the right.

• Finally, when data elements reach the edge of the
matrix, a loop around connection should be made
such that A(i,N) passes data to A(i,1) and A(N,j) passes
data to A(1,j) (see Figure 8).

Lemma 1 [19]: The above computation results
in the transitive closure of the input once all
input data elements have been passed through the
entire array exactly 3 times.

Without a transformation, this implementation does not
fit in the USTR due to the loop around connections.
Recall that in order to fit in our USTR, all data must flow
in the forward direction, namely either down or to the
right (see Section 3.4.1). However, based on the above
Lemma 1 we can expand the original representation in the
following manner.

Copy the entire array twice so that we have three NxN
arrays of PEs. Make a connection from the end of the ith
row in one array to the beginning of the ith row in the next
and from the end of the jth column in one array to the
beginning of the jth column in the next as shown in Figure
9. These connections replace the loop around connections
in the original systolic array implementation (see Figures
8 & 9).

This new representation qualifies as unidirectional and
therefore is an USTR of the Floyd-Warshall algorithm.

…

A11
A12

A1N

A11
A21

A1N

A21

A12

…

…

…

Figure 8: Systolic Array
implementation of Floyd-
Warshall algorithm

Figure 9: Unidirectional Space
Time Representation of
Systolic Array algorithm
for transitive closure.

1

2

WallacJR
96

 9

Note that each PE in the systolic array implementation
becomes a Computational Element (CE) in our USTR.
Also note, that although the representation visually
requires 3*N2 space, no additional memory is required
compared with the baseline implementation. Based on the
results in Section 3.3.2 we can execute each CE on a
uniprocessor architecture. We can also tile the
computation in the manner shown in Section 3.4.2 and
based on Theorem 1 we have:

Theorem 2: The Floyd Warshall algorithm can
be implemented on a uniprocessor such that the
processor-memory traffic is reduced by a factor
of β, where cache size is on the order of β2
compared with the baseline implementation.

The maximum reduction factor in processor-memory
traffic to perform ordinary matrix multiplication given a
limited internal memory is O(M) where M is the size of
the internal memory [10]. Using the structure of the
Floyd-Warshall dependency graph, it can be shown:

Theorem 3: Our USTR implementation of the
Floyd-Warshall algorithm is (asymptotically)
optimal with respect to processor memory traffic.

To illustrate this reduction in processor-memory traffic
we show results from Simplescalar experiments for the
number of cache misses (see Table 3). Even though this
algorithm performs a total of 3*N3 operations,
Simplescalar results show a 30x improvement in level-2
cache misses. Note that it was found experimentally that
the best tile size for the USTR algorithm on the Pentium
III architecture essentially ignores the level-1 cache and
focuses on the level-2 cache misses. This is due to the
level-2 cache being on-chip, and therefore the miss
penalty for a level-2 miss is much higher than a level-1
miss. For more information regarding experimental
results see Section 4.

3.4. Summary

In summary, we show

Table 4 comparing the
optimizations we have
discussed in Section 3 for
computation complexity,
processor-memory traffic,
and Simplescalar results.
Cache size is less than N2.
Experimental results are
shown in Section 4.

4. Experimental

Results

For our experiments we used two 933 MHz Pentium

III machines. These have separate instruction and data
level-1 caches, each 16 Kilobytes (KB), 4-way set
associative with 32 Byte (B) lines. The processors have a
unified on-chip level-2 cache, which is 256 KB, 8-way set
associative with 32 B lines. The TLB is split for data and
instructions. The instruction TLB has 32 entries and is 4-
way set associative with LRU replacement. The data
TLB has 64 entries and is 4-way set associative with LRU
replacement. The page size for both TLBs is 4 KB. The
operating system was Windows 2000 professional (used
MSVC++ compiler, version 6.0) on one and Mandrake
Linux on the other (used gcc compiler, version 2.95.2).

Data level-1 cache misses
N Baseline USTR

1024 0.81 8.16
1536 2.72 2.76

(billions)

Data level-2 cache misses
N Baseline USTR

1024 538 18
1536 1,814 57

(millions)

Data TLB misses
N Baseline USTR

1024 5.29 4.08
1536 17.76 15.61

(millions)

Table 3: Example Simplescalar results for
USTR Floyd-Warshall algorithm, ββββ = 140.
Architectural parameters used were
from Pentium III architecture; see
Section 4 for specific parameter values.

Summary of analytical and simulation results
 Baseline Tiled BDL USTR

Computational
complexity

N3 N3 N3 N3

Processor-memory
traffic

N3 N3 N3 N3/β

Data Level-1 cache
misses

2.72 2.13 1.95 2.76

Data Level-2 cache
misses

1.81 1.85 1.84 0.057

Data TLB misses 0.018 0.218 0.019 0.016
(billions)

Table 4: Summary of results from Section 3. Architectural parameters used
were from Pentium III architecture; see Section 4 for specific
parameter values.

WallacJR
97

 10

We also used a 500 MHz Alpha machine for our
experiments. This machine has split data and instruction
level-1 caches each 64 KB, 2-way set associative with 64
B lines. The level-2 cache is a unified off-chip cache of
size 4 Megabytes (MB), direct mapped with 64 B lines.
Along with these, the Alpha also has an 8-element fully
associative victim data buffer used for both instructions
and data. The TLB on the Alpha has 128 entries and is
fully associative. The page size is 8 KB. The operating
system is Linux and we used the gcc compiler (version
2.91.66).

Finally, we used a 300 MHz MIPS R12000. This was
part of a 64 processor SMP Origin 2000, although our
implementations ran only on one processor. This
processor also has split instruction and data level-1 cache;
each 32 KB, 2-way set associative, with 32 B lines. The
level-2 cache is a unified 8 MB cache, direct mapped,
with 64 B lines. The TLB has 64 entries, is fully
associative, with a page size of 4 KB. The operating
system was IRIX64 version 6.5 and we used the gcc
compiler (version 2.8.1).

The simulator that we used was from the Simplescalar
Architectural Research Toolkit, version 2.0 [3]. The
Simplescalar architecture is derived from the MIPS-IV
ISA. The tool we used was sim-cache, which simulates
the cache performance of a given executable. Parameters
that are customizable include level-1 and level-2
instruction and data cache parameters as well as
instruction and data TLB parameters. Parameters for
these include the number of sets, block size, associativity,
and replacement policy.

Figures 10-13 show the actual running times of the 4
implementations on the 4 different machines; compiler-
optimized, tiled and copied, block data layout (BDL), and
the USTR optimization.

On both Pentium III’s, we show small improvements
in the tiled optimization and the BDL, while the USTR
implementation gave better than 2x improvement over the
compiler optimized implementation (see Figures 10&11).
This is quite consistent with the simulation results
presented in earlier sections (see Table 4). The number of
cache misses for the tiled and copied and the BDL
optimization were both within 30% of the baseline for

0
100
200
300
400
500
600

1024 1536 2048
Number of Vertices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Baseline Tiled BDL USTR

Figure 10: Execution times for
implementations on Pentium III
running Windows 2000.

Figure 11: Execution times for
implementations on Pentium III
running Linux.

0

200

400

600

800

1000

1200

1024 1536 2048
Number of Vertices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Baseline Tiled BDL USTR

Figure 12: Execution times for
implementations on Alpha running
Linux.

0
100
200
300
400
500
600

1024 1536 2048
Number of Vertices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Baseline Tiled BDL USTR

0

500

1000

1500

2000

1024 1536 2048
Number of Vertices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Baseline Tiled BDL USTR

Figure 13: Execution times for
implementations on MIPS R12000
running IRIX64.

WallacJR
98

 11

level-1 and within 2% for level-2. The BDL had the best
level-1 cache performance and this shows up as the best
execution time in all but one specific case (N=1536 on
the Pentium III running Windows). One difference to
note is the difference in execution time for the baseline,
relative to the tiled and copied and the BDL, on the two
machines. This difference is probably due to the different
compilers being used and the level of optimization done
by those compilers. The USTR optimization’s
improvement matches very nicely with the 97% decrease
in level-2 cache misses. Recall that the memory
hierarchy on the Pentium III behaves more like a two
level memory hierarchy due to the level-2 cache being on-
chip. This performance led us to use a block size that
essentially ignored the level-1 cache. In fact our level-1
cache misses increased slightly from the baseline. This
drastic decrease in level-2 cache misses as well as a slight
decrease in TLB misses gave us an overall 2x
improvement in performance.

The Alpha machine showed significantly different
results. The tiled optimization and the BDL optimization
showed much larger performance improvements, while
the USTR implementation showed similar improvements
as what we saw on the Pentium III’s, approximately 2x
improvement. One reason for this may be that the Alpha
has an off-chip level-2 cache and a victim cache. This
would show very different miss penalties, than we saw on
the Pentium III. In order to take full advantage of the two
levels of cache on the Alpha a two level tiling of the
USTR should be employed (see Section 3.3.2, Figure 7).
At the time of this writing we have not performed these
experiments.

The MIPS R12000 showed surprisingly poor
performance for the baseline or compiler optimized code.
This led to almost a 2x improvement for the tiled and
copied optimization. The BDL optimization showed
approximately 15% improvement over the tiled and
copied optimization. The USTR optimization showed a
3x improvement over the baseline and almost a 2x
improvement over the tiled and copied optimization.
Apart from the poor performance of the baseline, these
results match roughly with the results from our other
architectures.

For each of the tiled optimizations (tiled and copied,
BDL, and USTR) we used experimentation to find an
optimal tile size for each machine. These results are
shown in Figure 14 and Table 5. For the USTR
optimization, we expanded our search space based on the
results from our block size selection heuristic (see Section
3.4.2, equation 1). We experimented with block sizes in
the range of 30 to 180 (see Figure 14). The best block
sizes for each machine and optimization are given in
Table 5.

5. Conclusions and Future Work

We examined a number of different optimizations for

the Floyd-Warshall algorithm. We noted that this
algorithm poses very different challenges from those seen
in dense linear algebra problems. In order to address
these challenges in a unique fashion, we proposed the
Unidirectional Space Time Representation (USTR). We
showed analytically that this representation could be used
to generate cache-friendly optimizations for a large class
of algorithms and we demonstrated the improvements in
cache performance for Transitive Closure using the
Simplescalar simulator. Using this representation, we
showed up to a 2x improvement in the performance of the
Floyd-Warshall algorithm on 3 different architectures.

Using the USTR representation it is also possible to
generate cache-friendly implementations of both the
Algebraic Path Problem and LU-Decomposition without
pivoting. The Algebraic Path Problem is essentially a
generalization of the Floyd-Warshall algorithm, so our
USTR implementation can be generalized in the same
fashion. For LU-Decomposition without pivoting the data
dependencies exist only in the forward direction and this
therefore fits nicely in a USTR.

The deep memory hierarchy of modern uniprocessors
poses new challenges and new opportunities for cache-
friendly optimization. Future work on the USTR will
address these new opportunities by developing multi-level

Optimal Tile Sizes
 P III,

W2K
PIII,

Linux
Alpha MIPS

Tiled and
Copied

36 32 42 42

BDL 38 40 40 40
USTR 140 140 70 70
USTR
Range

(26,148) (26,148) (36,209) (26,295)

Table 5: Optimal tile sizes for tiled
algorithms for each machine and
range given by tile size heuristic

250

270

290

310

330

350

0 100 200
Tile Size (N=2048)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 14: USTR Optimization,
tile size selection
Pentium III, Linux

WallacJR
99

 12

tiled data layouts and schedules that can be tuned to the
multiple levels of cache memory.

This work is part of the Algorithms for Data IntensiVe
Applications on Intelligent and Smart MemORies
(ADVISOR) Project at USC [1]. In this project we focus
on developing algorithmic design techniques for mapping
applications to architectures. Through this we understand
and create a framework for application developers to
exploit features of advanced architectures to achieve high
performance.

6. References

[1] ADVISOR Project. http://advisor.usc.edu/.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, Menlo Park, California, 1974.

[3] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. University of Wisconsin-Madison Computer
Sciences Department Technical Report #1342, June, 1997.

[4] S. Chatterjee and S. Sen. Cache Efficient Matrix
Transposition. In Proc. of International Symposium on High
Performance Computer Architecture, January 2000.

[5] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-
Conscious Structure Layout. In Proc. of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, May 1999.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
Massachusetts, 1990.

[7] M. Cosnard, P. Quinton, Y. Robert, and M. Tchuente
(editors). Parallel Algorithms and Architectures. North
Holland, 1986.

[8] P. Diniz. USC ISI, Personal Communication, March,
2001.

[9] M. Frigo, C. E. Leiserson, H. Prokop, and S.
Ramachandran. Cache-Oblivious Algorithms. In Proc. of 40th
Annual Symposium on Foundations of Computer Science, 17-18,
New York, NY, USA, October, 1999.

[10] J. Hong and H. Kung. I/O Complexity: The Red Blue
Pebble Game. In Proc. of ACM Symposium on Theory of
Computing, 1981.

[11] H. Kwak, B. Lee, A. R. Hurson, S. Yoon and W. Hahn.
Effects of Multithreading on Cache Performance. IEEE
Transactions on Computers, Vol. 48, No. 2, February 1999.

[12] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The Cache
Performance and Optimizations of Blocked Algorithms. In
Proc. of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems,
Palo Alto, California, April, 1991.

[13] N. Park, D Kang, K Bondalapati, and V. K. Prasanna.
Dynamic Data Layouts for Cache-conscious Factorization of the
DFT. In Proc. of International Parallel and Distributed
Processing Symposium, May 2000.

[14] D. A. Patterson and J. L. Hennessy. Computer
Architecture A Quantitative Approach. 2nd Ed., Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1996.

[15] F. Rastello and Y. Robert. Loop Partitioning Versus
Tiling for Cache-Based Multiprocessor. In Proc. of
International Conference Parallel and Distributed
Computing and Systems, Las Vegas, Nevada, 1998.

[16] S. Sen, S. Chatterjee. Towards a Theory of Cache-
Efficient Algorithms. In Proc. of Symposium on Discrete
Algorithms, 2000.

[17] SPIRAL Project. http://www.ece.cmu.edu/~spiral/.

[18] X. Tang, R. Ghiya, L. J. Hendren, and G. R. Gao. Heap
Analysis and Optimizations for Threaded Programs. In Proc. of
International Conference on Parallel Architectures and
Compilation Techniques, pages 14--25, San Francisco, Calif.,
November 1997.

[19] J. D. Ullman. Computational Aspects of VLSI.
Computer Science Press, Rockville, Maryland, 1983.

[20] D. A. B. Weikle, S. A. McKee, and Wm.A. Wulf.
Caches As Filters: A New Approach To Cache Analysis. In
Proc. of Grace Murray Hopper Conference, September 2000.

[21] R. C. Whaley and J. J. Dongarra. Automatically Tuned
Linear Algebra Software. High Performance Computing and
Networking, November 1998.

WallacJR
100

WallacJR

Analysis of Memory Hierarchy Performance of Block Data Layout
�

Neungsoo Park, Bo Hong, and Viktor K. Prasanna
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA 90089-2562�

neungsoo,bohong,prasanna � @halcyon.usc.edu
http://advisor.usc.edu

Abstract

Recently, several experimental studies have been conducted
on block data layout as a data transformation technique
used in conjunction with tiling to improve cache perfor-
mance. In this paper, we provide a theoretical analysis for
the TLB and cache performance of block data layout. For
standard matrix access patterns, we derive an asymptotic
lower bound on the number of TLB misses for any data lay-
out and show that block data layout achieves this bound.
We show that block data layout improves TLB misses by a
factor of �����	� compared with conventional data layouts,
where � is the block size of block data layout. This reduc-
tion contributes to the improvement in memory hierarchy
performance. Using our TLB and cache analysis, we also
discuss the impact of block size on the overall memory hi-
erarchy performance. These results are validated through
simulations and experiments on state-of-the-art platforms.

1. Introduction

The increasing gap between memory latency and proces-
sor speed is a critical bottleneck in achieving high perfor-
mance. The gap is typically bridged through a multi-level
memory hierarchy that can hide memory latency. The per-
formance of this memory hierarchy system is severely im-
pacted by the locality of data references. To improve mem-
ory hierarchy performance, compiler optimization tech-
niques (e.g. loop permutation, fusion, and tiling) [13, 14,
21] have received considerable attention, which improve
the locality of the data reference. These techniques, called
control transformations, change the loop iteration order,
thereby changing the data access pattern [4, 8, 19, 25]. Most

Supported by the DARPA Data Intensive Systems Program under con-

tract F33615-99-1-1483 monitored by Wright Patterson Air force Base, in
part by NSF CCR-9900613, and in part by an equipment grant from Intel
Corporation.

previous optimizations concentrate on single-level cache [8,
11, 15, 19, 23]. Multi-level caches in memory hierarchy
were considered by a few researchers [20, 25]. However,
most of these approaches target mainly the cache perfor-
mance, paying less attention to the Translation Look-aside
Buffer (TLB) performance. As the problem sizes become
larger, the overall performance can drastically degrade be-
cause of TLB thrashing [22]. Hence, both TLB and cache
must be considered in optimizing application performance.
In [12], cache and TLB performance were considered in
concert. In this analysis, TLB and cache were assumed to
be fully-set associative. However, cache is direct mapped or
small set-associative in most of state-of-the-art platforms.

Some recent work [11, 17, 18, 23] proposed data trans-
formations that change the data layout in memory to match
the data access pattern. It was proposed in [10] that both data
and loop transformation can be applied to loop nests for op-
timizing cache locality. In [5, 6], a matrix is partitioned into
small blocks of data. Data elements within one block are
mapped onto contiguous memory. These blocks were laid
out in memory by different space-filling curves. These data
layouts have shown performance improvement over canon-
ical row or column major layouts. Block data layout is one
such layout where blocks are arranged in row-major order.
ATLAS [2, 24] uses block data layout with tiling to exploit
temporal and spatial locality. The combination of block data
layout and tiling has shown high performance on various
platforms. However, these results were confirmed through
experiments; we are not aware of any formal analysis that
addresses TLB performance..

In this paper, we study the impact of block data layout � ,
with and without tiling, on the performance of both TLB
and caches. First, we analyze the intrinsic TLB performance
of block data layout. The TLB and cache performance for
block data layout with tiling are analyzed. The block data
�
To avoid confusion, in this paper, ‘block’ is used in the context of a

data transformation technique, e.g. block data layout. ‘tiling’ is used to
represent a control transform technique.

WallacJR
101

layout with tiling shows better TLB performance compared
with other state-of-the-art techniques like copying [11, 23]
and padding [15, 19]. Simulations and experiments are con-
ducted to verify this analysis.

Similar to the importance of tile size selection for tiling,
appropriate block size selection for block data layout is crit-
ical to achieve high performance. In ATLAS, the selec-
tion of the optimal block size is done empirically at compile
time by running several experiments with different block
sizes [24]. The selection criteria does not have any support-
ing formal analysis. In [5, 6], it is observed that the block
size should not be too small nor too large. However, no an-
alytical bounds for block size were presented. In this pa-
per, we propose an analytical bound for optimal block size
in block data layout, on the basis of our TLB and cache anal-
ysis.

The contributions of this paper are as follows:

� We present a lower bound analysis for TLB perfor-
mance. Further, we show that block data layout in-
trinsically has better TLB performance than canonical
layouts (Section 2). Compared with row major layout,
the number of TLB misses for block data layout is im-
proved by ��� � ��� � where

���
is the page size.

� We analyze the TLB and cache performance of tiling
with block data (Section 3.1 and 3.2). In tiled matrix
multiplication, block data layout improves the number
of TLB misses by a factor of � , where � is the block
size.

� On the basis of our cache and TLB analysis, we propose
a block size selection algorithm that provides a tight an-
alytical bound for block size (Section 3.3). The best
block sizes found by ATLAS fall in the range given by
our algorithm.

� We validate our analysis through simulations and ex-
periments on real platforms using matrix multiply, LU
decomposition and Cholesky factorization (Section 4).

The rest of this paper is organized as follows. Section 2
describes block data layout and gives analysis of its TLB
performance. Section 3 discusses the TLB and cache per-
formance when tiling and block data layout are used in con-
cert. A block size selection algorithm is described based on
this analysis. Section 4 shows simulation based as well as
experimental results. Concluding remarks are presented in
Section 5.

2. Block Data Layout and TLB Performance

In Section 2, we analyze the TLB performance of block
data layout. We show that block data layout has better intrin-
sic TLB performance than conventional data layouts. With-

640 1 5

16 17 20 21

32 33 36 37

40 41 44 45

34 35 38 39

42 43 46 47

48 49 52 53

56 57 60 61

50 51 54 55

58 59 62 63

10 11 14 15

26 27 30 31

8 9 12 13

24 25 28 29

2 3 7

18 19 22 23

(a) Row-major layout

6

40 1 5

16 17 20 21

32 33 36 37 40 41 44 45

34 35 38 39 42 43 46 47

48 49 52 53 56 57 60 61

50 51 54 55 58 59 62 63

10 11 14 15

26 27 30 31

8 9 12 13

24 25 28 29

2 3 7

18 19 22 23

(b) Block data layout

Figure 1. Various data layouts: block size ����� for
(b)

out loss of generality, the canonical layout is assumed to be
row major.

The following notations are used in this paper.
�	�

de-
notes virtual page size.
��� � denotes the TLB entry capacity.
In general,
��� ��� ��� . Block size is ��� � , where it is as-
sumed ������� ��� . Cache is assumed to be direct-mapped.

���� is the size of the � ��� level cache. Its line size is denoted as� ��� . We assume that TLB is fully set-associative and Least-
Recently-Used(LRU) replacement policy is used.

2.1. Block Data Layout

To support multi-dimensional array representations in
current programming languages, the default data layout
is row-major or column-major, denoted as canonical lay-
outs [7]. Both row-major and column-major layouts have
similar drawbacks. For example, consider a large matrix
stored in row-major layout. Due to large stride, column ac-
cesses can cause cache conflicts. Further, if every row in a
matrix is larger than the size of a page, column accesses can
cause TLB trashing, resulting in drastic performance degra-
dation. In block data layout, a large matrix is partitioned into
sub-matrices. Each sub-matrix is a � � � matrix and all el-
ements in the sub-matrix are mapped onto contiguous mem-
ory locations. The blocks are arranged in row-major order.
Figure 1 shows block data layout with block size ���!� .
2.2. TLB Performance of Block Data Layout

In this subsection, we present a lower bound on the TLB
misses for any data layout. We discuss the intrinsic TLB per-
formance of block data layout. We present an analysis on
the TLB performance of block data layout and show that its
performance is improved when compared with conventional
layouts. Throughout this paper, we consider an "#�$" array.
Also it is assumed that " is large enough that "&% �'��(

��� � .

WallacJR
102

2.2.1 A Lower Bound on TLB Misses

In general, most matrix operations consist of row and col-
umn accesses, or permutations of row and column accesses,
which are called generic access pattern � in this paper. In
this section, we consider an access pattern where an array
is accessed first along all rows and then along all columns.
The lower bound analysis of TLB misses incurred in access-
ing the data array along all the rows and then all the columns
is as follows.

Theorem 2.1 For accessing an array along all the rows
and then along all the columns, the asymptotic � minimum
number of TLB misses is given by � ���� ��� .
Proof: Consider an arbitrary mapping of array elements to
pages. Let �
	���� �� at least one element of row � is in page
����� Similarly, let ��	������� at least one element of column �
is in page ����� Let ��	��� �
	� and ��	��� ��	� . Note that ��	 ���	�% ��� � Using the mathematical identity that the arithmetic
mean is greater than or equal to the geometric mean (��	
���	�% � � ��	�� ��	�% � � ���), we have:

! �" �#
	%$ �

�&��	
�'��	 �$% � " ����)(��� �
Let * � (+�,) denote the number of pages where elements in
row � (column �) are scattered. The number of TLB misses
in accessing all rows consecutively and then all columns
consecutively is given by -/.$�1020�%�3 ��1$ � �&* ��4 ����
��� � � �5�3 �,6$ � �&+�,74 ����
��� � � ��� ����
��� � � is the number of page en-
tries required for accessing row � (column �) that are already
present in the TLB. Page � is accessed ��	 times by row ac-

cesses, thus, 3 ��1$ � * � �83
! �" �	%$ � ��	 . Similarly, 3 �,6$ � +�, �

3
! �" �	%$ � ��	 . Therefore, the total number of TLB misses is

given by

-�.$�1020�%
! �" �#
	%$ �

�&��	�����	 ��4 � ":9 ����
��� � �$%#� � " �� ��� 4 � ":9 ����
��� � ���
(1)

As the problem size (") increases, the number of pages ac-
cessed along a row (column) becomes larger than the size of
TLB (
��� �). Thus the number of TLB entries that are reused
is reduced between two consecutive row (column) accesses.
Therefore the asymptotic minimum number of TLB misses
is given by � ���� ��� . ;
<

In the rest of this paper, we refer to the access pattern of all rows and
all columns as generic access pattern=

This asymptotic [9] bound holds true when > is large. Also, the impact
of ?�@BA C becomes negligible when > is large and hence does not appear in
the bound.

We obtained a lower bound on TLB misses for any lay-
out when data are accessed along all rows and then along all
columns. This lower bound of TLB misses also holds when
data is accessed along an arbitrary permutation of all rows
and columns.

Corollary 2.1 For accessing an array along an arbitrary
permutation of row and column accesses, the asymptotic
minimum number of TLB misses is given by � ���� ��� .

2.2.2 TLB Performance

In this section, we consider the same access pattern as dis-
cussed in Section 2.2.1. Consider a given " � " array stored
in a canonical layout. During the first pass (row accesses),
the memory pages are accessed consecutively. Therefore,
TLB misses caused by row accesses is equal to

������ . Dur-
ing the second pass (column accesses), elements along the
column are assigned to " different pages. Hence, a column
access causes " TLB misses, since " (
��� � . All " col-
umn accesses result in " � TLB misses. The total number of
TLB misses caused by all row accesses and all column ac-
cesses is thus

������ ��" � . Therefore, in canonical layout, TLB
misses drastically increase due to column accesses.

Compared with canonical layout, block data layout has
better TLB performance. The following theorem shows that
block data layout minimizes the number of TLB misses.

Theorem 2.2 For accessing an array along all the rows
and then along all the columns, block data layout with block
size
� ��� � � ��� minimizes the number of TLB misses.

Detailed proof for this theorem can be found in [16]. In gen-
eral, the number of TLB misses for a �!� � block data layout
is � � �D � � �D . It is reduced by a factor of E ����F �2G D��� E 	 F �2G (H

D	 F �)
when compared with canonical layout. When � � � ���
(����I), this number approaches the lower bound shown in
Theorem 2.1.

This theorem holds true even when data in block data lay-
out is accessed along an arbitrary permutation of all rows
and columns.

Corollary 2.2 For accessing an array along an arbitrary
permutation of rows and columns, block data layout with
block size

� ��� � � ��� minimizes the number of TLB misses.

Even though block data layout has better TLB perfor-
mance compared with canonical layouts for generic access
patterns, it alone does not reduce cache misses. The data ac-
cess pattern of tiling matches well with block data layout. In
the following section, we discuss the performance improve-
ment of TLB and caches when block data layout is used in
conjunction with tiling.

WallacJR
103

for kk=0 to N by B
 for jj=0 to N by B
 for i=0 to N
 for k=kk to min(kk+B-1,N)
 r = X(i,k)
 for j=jj to min(jj+B-1,N)
 Z(i,j) += r*Y(k,j)

(a) 5-loop tiled matrix multiplication

for jj=0 to N by B
 for kk=0 to N by B
 for ii=0 to N by B
 for i=ii to min(ii+B-1,N)
 for k=kk to min(kk+B-1,N)
 r = X(i,k)
 for j=jj to min(jj+B-1,N)
 Z(i,j) += r*Y(k,j)

(b) 6-loop tiled matrix multiplication

Figure 2. Tiled matrix multiplication

3. Performance Analysis of Block Data Layout
with Tiling

Tiling is a well-known optimization technique that im-
proves cache performance. Tiling transforms the loop nest
so that temporal locality can be better exploited for a given
cache size. Consider an " � " matrix multiplication rep-
resented as �#����� . For large problems, its performance
can suffer from severe cache and TLB thrashing. To reduce
cache and TLB misses, tiling transforms the matrix multipli-
cation to a 5-loop nest tiled matrix multiplication (TMM) as
shown in Figure 2(a). To efficiently utilize block data lay-
out, we consider a 6-loop TMM as shown in Figure 2(b).

3.1. TLB Performance

In this section, we show the TLB performance improve-
ment of block data layout with tiling. To illustrate the effect
of block data layout on tiling, we consider a generic access
pattern abstracted from tiled matrix operations. The access
pattern is shown in Figure 3, where the whole matrix is ac-
cessed first along the rows then along the columns, in a tiled
pattern. The tile size is equal to � .

With canonical layout, TLB misses will not occur when
accessing consecutive tiles in the same row, if ���
 �� � .
Hence, the tiled accesses along the rows generate

� ���� TLB
misses. However, tiled accesses along columns cause con-
siderable TLB misses. � page table entries are necessary
for accessing each tile. For all tiled column accesses, the to-
tal number of TLB misses is - ������ � � � D � � D � � �D �
It is reduced by a factor of � compared with the number of
TLB misses for all column accesses without tiling (see Sec-
tion 2.2).

B

B

(a) Tiled row access

B

B

(b) Tiled column access

Figure 3. Tiled accesses

vP

vPB 7.12

vP3.0

=

(a) over 2 pages

vP
vP3.0

vPB 7.12 =

(b) over 3 pages

Figure 4. Blocks extending over page boundaries

The total number of TLB misses are further reduced
when block data layout is used in concert with tiling 	 . This
is formally stated in Theorem 3.1. To analyze TLB misses
for tiled accesses using block data layout, we need to know
the number of pages that a block of data is mapped onto.
This is stated in Lemma 3.1.

Lemma 3.1 Consider an array stored in block data layout
with block size � � � , where � � � � ��� . The average num-
ber of pages that one block of data is mapped onto is ���'I .
Proof: For block size � � � , assume that �!��
 �� , where

 is a non-negative integer and ��������I . An illustrative
example of a block extending over page boundaries is shown
in Figure 4. The probability that a block extends over
 �I contiguous pages is I)4�� . The probability that a block
extends over
 � � contiguous pages is � . Therefore, the
average number of pages per block in block data layout is
given by: �2I�4�� ��� ��
 ��I ����� � ��
 � � � � ��� I�� ;
Theorem 3.1 Assume that an " �!" array is stored using
block data layout. For tiled access along the rows and then
the columns, the total number of TLB misses is ����� �	 � ������ .

Proof: Blocks in block data layout are arranged in row-
major order. So, a page overlaps between two consecutive
blocks that are in the same row. The page is continuously ac-
cessed. The number of TLB misses caused by all tiled row
accesses is thus

� ���� , which is the minimum number of TLB
misses. However, no page overlaps between two consecu-
tive blocks in the same column. Therefore, each block along
�

Throughout this paper, the block size of block data layout is assumed
to be the same as the tile size so that the tiled access pattern matches the
block data layout.

WallacJR
104

WallacJR

the same column goes through ��� ��I � different pages ac-
cording to Lemma 3.1. The number of TLB misses caused
by all tiled column accesses is thus - ���� � ���)��I ��� � D �� D � ��� ��I � � �	 ��� � Therefore, the total TLB misses caused

by all row and all column accesses is -�.$�1020 � ���
� �	 � ������ �;
For tiled access, the number of TLB misses using canonical
layout is

������ � ���D , where � � � � ��� . Using Theorem 3.1,
compared with canonical layout, block data layout reduces

the number of TLB misses by
� 	 ���2F � 	
� 	 F � � D F � 	� 	 F � .

A similar analytical result can be derived for real appli-
cations. Consider the 5-loop TMM with canonical layout in
Figure 2 (a). Array � is accessed in a tiled row pattern. On
the other hand, arrays � and � are accessed in a tiled col-
umn pattern. A tile of each array is used in the inner loops
����� ��� � � . The number of TLB misses for each array is equal
to the average number of pages per tile, multiplied by the
number of tiles accessed in the outer loops ��� ��� �6� � . The av-
erage number of pages per tile is � � D ���� . Therefore, the to-
tal number of TLB misses is given by: � " � � �D � � �D ��� �5�
" � � �D � ���� � .

Consider the 6-loop TMM on block data layout as shown
in Figure 2 (b). A � � � tile of each array is accessed in
the inner loops ����� ��� � � with block layout. The number of
TLB misses for each array is equal to the average number of
pages per block multiplied by the number of blocks accessed
in the outer loops ������� � ��� �6� � . According to Lemma 3.1, the
average number of pages per block is

D ���� � I ���&� � I � .
Therefore, the total number of TLB misses (- �) is

- � �#� " � � I
� ��� �

I
� ��� � " � � I��� � I

� ��� � (2)

Compared with the 5-loop TMM with canonical layout,
TLB misses decrease by a factor of �����	� using the 6-loop
TMM with block data layout.

3.2. Cache Performance

For a given cache size, tiling transforms the loop nest so
that the temporal locality can be better exploited. This re-
duces capacity misses. However, since most of the state-
of-the-art architectures have direct-mapped or small set-
associative caches, tiling can suffer from considerable con-
flict misses as shown in Figure 5 (a). This degrades the over-
all performance.

We can reorganize a canonical layout to a block layout
for tiled computations. Then as shown in Figure 5 (b), a self
interference miss does not occur since all elements in a block
can be mapped into contiguous locations in cache without
any conflict.

In general, cache miss analysis for direct mapped cache
with canonical layout is complicated because the self in-

� � �	 	

� �� �� �

CACHE

(a) Canonical layout

CACHE

 � �� �
� � � �
(b) Block data layout

Figure 5. Example of conflict misses

terference misses cannot be quantified easily. Cache per-
formance analysis of tiled algorithm was discussed in [11].
The cache performance of tiling with copying optimization
was also presented. We observe that the behavior of cache
misses for tiled access patterns on block layout is similar to
that of tiling with copying optimization on canonical layout.
Also, self-interference misses can be easily quantified when
block data layout is used. According to these, we have de-
rived the total number of cache misses for 6-loop TMM with
block data layout. Detailed proof can be found in [16]. For
� ��� level cache with line size

� ��� and cache size
���� , the total
number of cache misses (� � �) is:

� � �5H
����������� ����������
���������� �D�� ��� E � ����� F � � ���� G !��� " � �� � 	 D F�# ����� !���%$

for ��� �
�������������� 	 D !��� � �D 4 � !���D � � �
4 �� � # ����� !���&$
for
�
���� � ��� � �
�������������� I � �D ��'�I � ���D)(*� D F � ��� !���+",$

for
� �
���� � �

(3)

3.3. Block Size Selection

To achieve high performance, it is significant to select the
block size of block data layout. In this section, we describe
an approach for selecting the block size. In a multi-level
memory hierarchy system, it is difficult to predict the execu-
tion time (-.-0/!-) of a program. But, -.-0/!- is proportional to
the total miss cost of TLB and cache. In order to minimize-�-0/!- , we will evaluate and minimize the total miss cost for
both TLB and 1 -level caches. We have:� � � - � 9 � �� � � #

�1$ �
� � �02�� F � (4)

where
� � denotes the total miss cost, � � � is the number

of misses in the � ��� level cache, - � is the number of TLB
misses, 2�� is the cost of a hit in the � ��� level cache, and

� �� �
is the cost of a TLB miss. The �31���I � ��� level cache is the
main memory. It is assumed that all data reside in the main
memory (� � F � ���).

For a simple 2-level memory hierarchy that consists of
only one level cache and TLB, the total miss cost (denoted

WallacJR
105

0 20 40 60 80 100
0

0.5

1

1.5

2x 10
9

Block size

M
is

s
co

st
 (

cy
cl

es
)

B
tc1

sqrt(S
c1

)

TLB miss cost
L1 miss cost
L2 miss cost

(a) Miss cost of TLB, L1, and
L2 cache (� @�� � is obtained
using Eq.(6))

0 20 40 60 80 100
0

2

4

6

8

10x 10
9

Block size

T
ot

al
 m

is
s

co
st

 (
cy

cl
es

)

H
3
/H

2
 = 4, 8, ... 40

M
tlb

 = H
3

H
3
/H

2
 = 4

H
3
/H

2
 = 40

(b) Total miss cost with vari-
ous L2 miss penalty

Figure 6. Miss cost estimation for 6-loop TMM (Ul-
traSparc II parameters)

as
� �$��� �) in Eq. (4) reduces to:� �$��� � � - � 9 � �� � � � � 9 2 � � (5)

where 2 � is the access cost of main memory. In the above
estimation,

� �� � and � � are substituted with Eq.(2) and
Eq.(3), respectively. Using the derivative of

� ����� � , the op-
timal block size, � ��� � , which minimizes the total miss cost
caused by L1 cache and TLB misses is given as

����� � H
���� � � ���3�	��
�� ��� ������� � ���	� F � � ��	� !�	� � 2 � "
�� �� 2 � � (6)

We now extend this analysis to determine a range for op-
timal block size in a multi-level memory hierarchy that con-
sists of TLB and two levels of cache. The miss cost is classi-
fied into two groups: miss cost caused by TLB and L1 cache
misses and miss cost caused by L2 misses. Figures 6 (a)
and (b) show the miss cost estimated through Eqs.(2) and
(3). Figure 6(a) represents the individual cost of TLB, L1,
and L2 miss, using UltraSparc II parameters. Figure 6(b)
shows the change of estimated total miss costs based on dif-
ferent ratios of L1 cache miss penalty (2 �) and L2 cache
miss penalty (2 �). Using Eq.(6), we discuss the total miss
cost for 3 ranges of block size:

Lemma 3.2 For ��� � ��� � ,
� �����	��� � ��������� � � .

Proof: According to the derivatives, � ����
 �	�� D � � and� ��� �� D ��� for � � ����� � , TLB, L1, and L2 miss costs in-
crease as block size decreases. This is shown in Figure 6(a),
thereby increasing the total miss cost. Therefore, the opti-
mal block size cannot be in the range ��� � ��� � . ;
Lemma 3.3 For ��� �
�� � , � �����	��� � ��� �
�� � � .
Proof: In the range ��� �
�� � , the change in TLB miss
cost is negligible as the block size increases. Since block

size is larger than L1 cache size, self-interferences occur in
this range. The number of L1 cache misses drastically in-
creases as shown in Figure 6(a). For

�
�� � � � �
� �
�� � ,

although the number of L2 cache misses decreases (� ��� �� D �
�), the ratio of derivatives of Eq.(3) for L1 and L2 misses is
as follows:����� 2 � � ������ D2 � � ��� �� D

����� � 2 �2 �
������

� ����	� � 	 !�	� � 	 � �D � 4 �D � �� ���� � � 	 !� � 4 � ��� � ��� � F � � �� � !� � " �D � �
������ ��I��

Therefore, the total miss cost increases for
�
�� � � � �� �
�� � . For � % � �
�� � , there is no reuse in L1 cache.

Thus, the L1 cache miss cost saturates. As shown in Fig-
ure 6(b), - � ���	����- � � �
�� � � for � % � �
�� � , because
L1 miss cost is dominantly larger than L2 miss cost and TLB
miss cost for � % � �
�� � . Therefore, the optimal block size
cannot be in the range ��� �
�� � . ;
Detailed proof of Lemma 3.3 can be found in [16].

Theorem 3.2 The optimal block size � ��� � satisfies � ��� � �� ��� � � �
�� � .
Proof: This follows from Lemma 3.2 and 3.3. Therefore,
an optimal block size that minimizes the total miss cost is
located in � ��� � � � ��� � � �
�� � . We select a block size that
is a multiple of

� � � (L1 cache line size) in this range. ;
4 Experimental Results

To verify our TLB performance analysis, simulations for
the generic access pattern (accessing along all rows and
then all columns) were performed. Furthermore, three ap-
plications (matrix multiplication, LU decomposition, and
Cholesky factorization) are tested through simulations and
executions on real platforms to confirm our analysis.

4.1 Simulations of generic access pattern

To verify our TLB performance analysis, simulations
were performed using the SimpleScalar simulator [3]. It is
assumed that the page size is "! �)+$#&% and the data TLB is
fully set-associative with 64 entries (similar to the data TLB
in UltraSparc 2.) Double precision data points are assumed.
A ' ���(' � block size is considered for block data layout.

Table 1 compares the TLB misses of block data layout
with canonical layout when the matrix is accessed with a
generic access pattern. Table 1 (a) shows the TLB misses
for accesses along all rows and then all columns. For small
problem sizes, TLB misses with block data layout are con-
siderably less than those with canonical layout. For prob-
lem size I � � � �:I � � � , TLB entries used in a column(row)
access are almost fully reused in the next column(row) ac-
cess, thereby ����
��� � � in Eq.(1) becoming relatively large.

WallacJR
106

Table 1. Comparison of TLB misses

Layout 1024 2048 4096

Block Layout 2081 81794 1196033
Canonical Layout 1049601 4198401 16793601

(a) Along all rows and then all columns

Layout 1024 2048 4096

Block Layout 64140 273482 1080986
Canonical Layout 1053606 4208690 16822675

(b) Arbitrary permutation of row and column accesses

Layout 1024 2048 4096

Block Layout 64501 274473 1080465
Canonical Layout 1053713 4208681 16822395

(c) Arbitrary permutation of all rows followed by arbitrary
permutation of all columns accesses

The number of TLB misses using block data layout is 504.37
times less than that using canonical layout. It is also less
than the lower bound obtained from Theorem 2.1. For
larger problem sizes, ����
��� � � in Eq.(1) becomes negligi-
ble, since the TLB entries cannot be reused. Hence the
total number of TLB misses approaches the lower bound.
As shown in Table 1 (a), TLB misses with block data lay-
out are upto 16 times less compared with canonical layout.
Table 1 (b) and (c) confirm Corollary 2.1 and 2.2. With
these access patterns, TLB entries referenced during one
row(column) access are not reused when accessing the next
row(column). The number of TLB misses with block data
layout approaches the lower bound on TLB misses.

Table 2 shows simulation results for tiled row and column
accesses. Block size is set to be the same as the tile size.
As shown in Table 2, the number of TLB misses conform
our analysis from Theorem 3.1. The number of TLB misses
with block data layout is 91% less than that with canonical
layout.

4.2 Experimental results for various applications

To show the effect of block data layout, we performed
simulations and experiments on the following applications:
tiled matrix multiplication(TMM), LU decomposition, and
Cholesky factorization(CF). The performance of tiling with

Table 2. TLB misses for all tiled row accesses fol-
lowed by all tiled column accesses

Layout 1024 2048 4096

Block Layout 2081 12289 49153
Canonical Layout 33794 139265 561025

block data layout (tiling+BDL) is compared with other op-
timization techniques: tiling with copying(tiling+copying),
and tiling with padding(tiling+padding). For tiling+BDL,
the tile size (in tiling) is chosen to be the same as the block
size in block data layout. Initial and final data layouts are
canonical layouts. All the costs in performing data layout
transformations (from canonical layout to block data layout
and vice versa) are included in the reported results. As stated
in [11], we observed that the copying technique cannot be
applied efficiently to LU and CF applications, since copy-
ing overhead offsets the performance improvement. Hence
we do not consider tiling+copying for these applications. In
all our simulations and experiments, the data elements are
double-precision.

4.2.1 Simulation results

To show the performance of TLB and caches using
tiling+BDL, simulations were performed using the Sim-
pleScalar simulator [3]. The problem size was I � � � � I � � � .

0

100

200

300

400

500

600

700

800

900

1000

Tiling+Copy Tiling+BDL Tiling+Padding

T
ot

al
 M

is
s

C
os

t (
m

ill
io

ns
)

L2 miss cost

L1 miss cost

TLB miss cost

(a) The comparison of total
miss cost

0

200

400

600

800

1000

1200

1400

1600

8 20 32 44 56

Block Size

T
ot

al
 M

is
s

C
os

t (
m

ill
io

n
cy

cl
es

)

TLB miss cost L1 miss cost L2 miss cost

Search range of ATLAS

Our range

(b) Effect of block size on BDL

Figure 8. Total miss cost for TMM using UltraSparc
II parameters

Figures 7 and 8 show the TMM simulation results , based
on UltraSparc II parameters. As shown in Figure 7(a),
Tiling+BDL reduced 91–96% of TLB misses. This confirms
our analysis presented in Section 3.1. Figure 8 shows the
total miss cost (calculated from Eq. (4)) for TMM. L1, L2,
and TLB miss penalties were assumed to be 6, 24, and 30
cycles, respectively. Figure 8(a) shows the comparison of
the total miss cost of tiling+BDL with that of tiling+copying
and tiling+padding. The comparison shows that tiling+BDL
results in the smallest total miss cost. Specifically, the TLB
miss cost of tiling+BDL is negligible compared with L1 and
L2 miss costs. Figure 8(b) shows the effect of block size on
the total miss cost for TMM using tiling+BDL. As discussed
in Section 3.3, � ��� � � ' ��� � , �
�� � � ��� � ' , and

� � � �
�

us-
ing this architecture parameters. Theorem 3.2 suggests the
range for optimal block size to be 36–44. Simulation results
show that the optimal block size for this architecture was 44.

WallacJR
107

0

0.5

1

1.5

2

2.5

3

28 32 36 40

Block Size

T
L

B
 m

is
se

s
(m

ill
io

n
s)

Tiling+Copy
Tiling+BDL
Tiling+Pading

(a) TLB misses

0

20

40

60

80

100

120

28 32 36 40

Block Size
L1

 m
is

se
s

(m
ill

io
ns

)

Tiling+Copy
Tiling+BDL
Tiling+Padding

(b) L1 misses

0

2

4

6

8

10

12

14

28 32 36 40
Block Size

L
2

m
is

se
s

(m
ill

io
n

s)

Tiling+Copy
Tiling+BDL
Tiling+Pading

(c) L2 misses

Figure 7. Simulation results for TMM using UltraSparc II parameters

0

2

4

6

8

10

12

14

16 24 32 40 48

Block size

T
LB

 m
is

se
s

(m
ill

io
ns

)

Tiling+BDL
Tiling+Padding

(a) TLB misses

0

20

40

60

80

100

120

16 24 32 40 48

Block size

L1
 m

is
se

s
(m

ill
io

ns
)

Tiling+BDL

Tiling+Padding

(b) L1 cache misses

0

20

40

60

80

100

120

16 24 32 40 48

Block size

L2
 m

is
se

s
(m

ill
io

ns
)

Tiling+BDL

Tiling+Padding

(c) L2 cache misses

Figure 9. Simulation results for LU using Pentium III parameters

As shown in Figure 8(b), our proposed range is much tighter
than the search range of ATLAS.

Figure 9 and 10 present simulation results for LU using
Intel Pentium III parameters. Similar to TMM, the num-
ber of TLB misses for tiling+BDL was almost negligible
compared with that for tiling+padding as shown in Fig-
ure 9(a). For both techniques, L1 and L2 cache misses were
reduced considerably because of 4-way set-associativity.
For tiling+padding, when the block size was larger than
L1 cache size, the padding algorithm in [15] suggested
a pad size of 0. There is essentially no padding effect,
thereby drastically increasing L1 and L2 cache misses. Fig-
ure 10 shows the block size effect on total miss cost using
tiling+padding and tiling+BDL. Tiling+padding reduced L1
and L2 cache miss costs considerably. However, TLB miss
costs were still significantly high, affecting the overall per-
formance. As discussed in Section 3.3, the suggested range
for optimal block size is 32–44. Simulations validate that
the optimal block size achieving the smallest miss cost lo-
cates in the range selected using our approach.

4.2.2 Application execution results on real platforms

To verify our block size selection and the perfor-
mance improvements using block data layout, we

0

100

200

300

400

500

600

700

800

16 24 32 40 48

Block size

T
ot

al
 m

is
s

co
st

 (
m

ill
io

n
cy

cl
es

) L2 miss cost

L1 miss cost

TLB miss cost

(a) Tiling+Padding

0

100

200

300

400

500

600

700

800

16 20 24 28 32 36 40 44 48

Block size

T
ot

al
 m

is
s

co
st

 (
m

ill
io

n
cy

cl
es

)

L2 miss cost

L1 miss cost

TLB miss cost

(b) Tiling+BDL

Figure 10. Effect of block size on LU decomposi-
tion using Pentium III parameters

performed experiments on several platforms. The pa-
rameters are tabulated in Table 3. gcc compiler was
used in these experiments. The compiler optimization
flags were set to “-fomit-frame-pointer -O3
-funroll-loops”. Execution time was the user pro-
cessor time measured by sys-call clock(). The problem
sizes ranged from I � � ��� I � � � to I�� � ���:I�� � � .

The experimental results of TMM using tiling+BDL on
UltraSparc II is shown in Fig. 11. Fig. 11(a) shows the best
block size for TMM with respect to different problem sizes.
For each problem size, we performed experiments by test-

WallacJR
108

Table 3. Features of various experimental platforms
Platforms Speed L1 cache L2 cache TLB

(MHz) Size Line Ass. Size Line Ass. Entry page Ass.
(� �) (�������) (� �) (�������) (� �)

Alpha 21264 500 64 64 2 4096 64 1 128 8 128
UltraSparc II 400 16 32 1 2048 64 1 64 8 64
UltraSparc III 750 64 32 4 4096 64 4 512 8 2

Pentium III 800 16 32 4 512 32 4 64 4 4

0 20 40 60
1000

1100

1200

1300

1400

1500

1600

Best Block Size

P
ro

bl
em

 S
iz

e Our Range

(a) Block size selection

1000 1200 1400 1600
10

20

30

40

50

60

70

80

Problem Size

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+Copying
Tiling+BDL

(b) Performance comparison

Figure 11. Experimental results for TMM on Ultra-
SPARC II

0 20 40 60 80 100
1000

1100

1200

1300

1400

1500

1600

Best Block Size

P
ro

bl
em

 S
iz

e

(a) Block size selection

1000 1200 1400 1600
5

10

15

20

25

30

35

40

Problem Size

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+Copying
Tiling+BDL

(b) Performance comparison

Figure 12. Experimental results for TMM on Alpha
21264

ing block sizes ranging from 8–80. In all these tests, we
found that the optimal block size for each problem size was
in the range given by Theorem 3.2. This is shown in Fig-
ure 11(a). We also tested ATLAS. Through a wide search
ranging from 16 to 44, ATLAS found 36 and 40 as the
optimal block sizes. These blocks lie in the range given
by Theorem 3.2. These experiments confirm that our ap-
proach proposes a reasonably good range for block size se-
lection. Figures 11(b) show the execution time comparison
of tiling+BDL with tiling+copying and tiling+padding. Fig-
ure 12–14 show experimental results for 3 different appli-
cations on 3 different platforms. Tiling+BDL technique is
faster than using other optimization techniques, for almost
all problem sizes and on all the platforms. These results con-
firm our analysis. More experimental results are available
in [16].

0 20 40 60 80 100
1000

1100

1200

1300

1400

1500

1600

Best Block Size

P
ro

bl
em

 S
iz

e

(a) Block size selection

1000 1200 1400 1600
5

10

15

20

25

30

35

40

Problem Size

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(b) Performance comparison

Figure 13. Experimental results for LU on Ultra-
SPARC III

0 20 40 60
1000

1100

1200

1300

1400

1500

1600

Best Block Size

P
ro

bl
em

 S
iz

e

(a) Block size selection

1000 1200 1400 1600
0

2

4

6

8

10

Problem Size

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(b) Performance comparison

Figure 14. Experimental results for Cholesky fac-
torization on Pentium III

5 Concluding Remarks

This paper studied a critical problem in understanding
the performance of algorithms on state-of-the-art machines
that employ multi-level memory hierarchy. We presented a
lower bound on the number of TLB misses for any data lay-
out and showed that block data layout achieves this bound.
The number of TLB misses using tiling and block data lay-
out were considerably reduced compared with copying or
padding techniques. We showed that block data layout with
tiling leads to improved overall memory hierarchy perfor-
mance compared with other techniques. Further, we pro-
posed a tight range for block size in ATLAS using our per-
formance analysis. Our analysis was verified using simula-
tions as well as actual execution results.

This work is part of the Algorithms for Data IntensiVe

WallacJR
109

Applications on Intelligent and Smart MemORies (ADVI-
SOR) Project at USC [1]. In this project we focus on de-
veloping algorithmic design techniques for mapping appli-
cations to architectures. Through this we understand and
create a framework for application developers to exploit
features of advanced architectures to achieve high perfor-
mance.

References

[1] ADVISOR Project. http://advisor.usc.edu.
[2] Automatically Tuned Linear Algebra Software (ATLAS).

http://math-atlas.sourceforge.net/.
[3] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Ver-

sion 2.0. Technical Report 1342, University of Wisconsin-
Madison Computer Science Department, June 1997.

[4] J. Chame, M. Hall, and J. Shin. Compiler Transformations
for Exploiting Bandwidth in PIM-Based Systems. Proceed-
ings of Solving the Memory Wall Workshop, held in conjunc-
tion with the ISCA 2000, June 2000.

[5] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and
M. Thottethodi. Nonlinear Array Layouts for Hierarchical
Memory Systems. Proceedings of the 13th ACM ICS ’99,
June 1999.

[6] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thot-
tethodi. Recursive Array Layouts and Fast Parallel Matrix
Multiplication. Proceedings of the 11th ACM SPAA, pages
222–371, June 1999.

[7] M. Cierniak and W. Li. Unifying Data and Control Trans-
formations for Distributed Shared-Memory Machines. Pro-
ceedings of the SCM SIGPLAN PLDI 1995, pages 205–217,
June 1995.

[8] S. Coleman and K. S. McKinley. Tile Size Selection Using
Cache Organization and Data Layout. Proceedings of the
SIGPLAN PLDI 1995, June 1995.

[9] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algo-
rithms in Pseudocode: The Human Dimension. W. H. Free-
man Press, 1998.

[10] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Baner-
jee. Improving Locality Using Loop and Data Transforma-
tions in an Integrated Framework. Proceedings of the 31st
IEEE/ACM International Symposium on Microarchitecture,
November 1998.

[11] M. Lam, E. Rothberg, and M. E. Wolf. The Cache Perfor-
mance and Optimizations of Blocked Algorithms. Proceed-
ings of ASPLOS-IV, April 1991.

[12] N. Mitchell, K. Högstedt, L. Carter, and J. Ferrante. Quan-
tifying the Multi-Level Nature of Tiling Interactions. Inter-
national Journal of Parallel Programming, 1998.

[13] D. Padua. Outline of a Roadmap for Compiler Technology.
IEEE Computing in Science & Engineering, Fall 1996.

[14] D. Padua. The Fortran I Compiler. IEEE Computing in Sci-
ence & Engineering, January/Febrary 2000.

[15] P. R. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Aug-
menting Loop Tiling with Data Alignment for Improved
Cache Performance. IEEE Transactions on Computers,
48(2), Feburary 1999.

[16] N. Park, B. Hong, and V. K. Prasanna. Tiling, Block Data
Layout, and Memory Hierarchy Performance. Technical Re-
port USC-CENG 01-05, Department of Electrical Engineer-
ing, USC, September 2001.

[17] N. Park, D. Kang, K. Bondalapati, and V. K. Prasanna. Dy-
namic Data Layouts for Cache-conscious Factorization of
DFT. Proceedings of IPDPS 2000, April 2000.

[18] N. Park and V. K. Prasanna. Cache Conscious Walsh-
Hadamard Transform. ICASSP 2001, May 2001.

[19] G. Rivera and C.-W. Tseng. Data Transformations for Elim-
inating Conflict Misses. ACM SIGPLAN PLDI 1998, June
1998.

[20] G. Rivera and C.-W. Tseng. Locality Optimizations for
Multi-Level Caches. Proceedings of IEEE SC’99), Novem-
ber 1999.

[21] J. Sanchez, A. Gonzalez, and M. Valero. Static Locality
Analysis for Cache Management. PACT 1997, November
1997.

[22] A. Saulsbury, F. Dahgren, and P. Stenström. Receny-based
TLB Preloading. ISCA 2000, June 2000.

[23] O. Temam, E. D. Granston, and W. Jalby. To Copy or Not to
Copy: A Comile-Time Technique for Assessing When Data
Copying Should be Used to Eliminate Cache Conflicts. Pro-
ceedings of IEEE SC’93, November 1993.

[24] R. C. Whaley and J. Dongarra. Automatically Tuned Linear
Algebra Software (ATLAS). Proceedings of SC’98, Novem-
ber 1998.

[25] Q. Yi, V. Adve, and K. Kennedy. Transforming Loops to
Recursion for Multi-Level Memory Hierarchies. ACM SIG-
PLAN PLDI 2000, June 2000.

WallacJR
110

Tiling, Block Data Layout,

and Memory Hierarchy Performance

Neungsoo Park, Bo Hong,

and Viktor K. Prasanna

CENG 01-05

Department of Electrical Engineering - Systems

Uninversity of Southern California

Los Angeles, California 90089-2562
(213-740-4483)

WallacJR
111

Tiling, Block Data Layout, and Memory Hierarchy Performance �

Neungsoo Park, Bo Hong, and Viktor K. Prasanna

Department of Electrical Engineering - Systems

University of Southern California

Los Angeles, CA 90089-2562

fneungsoo,bohong,prasannag@ceng.usc.edu

http://advisor.usc.edu

Abstract

Recently, several experimental studies have been conducted on block data layout in con-

junction with tiling as a data transformation technique to improve cache performance. In this

paper, we analyze cache and TLB performance of such alternate layouts (including block data

layout and Morton layout) when used in conjunction with tiling. We derive a tight lower bound

on TLB performance for standard matrix access patterns, and show that block data layout and

Morton layout achieve this bound. To improve cache performance, block data layout is used in

concert with tiling. Based on the cache and TLB performance analysis, we propose a data block

size selection algorithm that �nds a tight range for optimal block size. To validate our analysis,

we conducted simulations and experiments using tiled matrix multiplication, LU decomposition

and Cholesky factorization. For matrix multiplication, simulation results using UltraSparc II

parameters show that tiling and block data layout, with a block size given by our block size

selection algorithm, reduces upto 93% of TLB misses compared with other techniques (copying,

padding, etc.). L1 and L2 cache misses are also reduced. Experiments on several platforms (Ul-

traSparc II and III, Alpha, and Pentium III) show that tiling with block data layout achieves up

to 50% performance improvement over other techniques that use conventional layouts. Morton

layout is also analyzed and compared with block data layout. Experimental results show that

matrix multiplication using block data layout is upto 15% faster than that using Morton data

layout.

�Supported by the DARPA Data Intensive Systems Program under contract F33615-99-1-1483 monitored by

Wright Patterson Air force Base and in part by an equipment grant from Intel Corporation.

1

WallacJR
112

1 Introduction

The increasing gap between memory latency and processor speed is a critical bottleneck in achieving

high performance. The gap is typically bridged by a multi-level memory hierarchy that can hide

memory latency. This memory hierarchy consists of multi-level caches, which are typically on- and

o�- chip caches. To improve the e�ective memory hierarchy performance, various hardware solutions

have been proposed [3, 7, 9, 10, 19]. Recent processors such as Intel Merced [24] provide increased

programmer control over data placement and movement in a cache-based memory hierarchy, in

addition to providing some memory streaming hardware support for media applications. To exploit

these features, it is important to understand the e�ectiveness of control and data transformations.

Along with hardware solutions, compiler optimization techniques have received considerable

attention [14, 15, 22]. As the memory hierarchy gets deeper, it is critical to e�ciently manage

the data. To improve data access performance, one of the well-known optimization techniques is

tiling. Tiling transforms loop nests so that temporal locality can be better exploited for a given

cache size. However, tiling focuses only on the reduction of capacity cache misses by decreasing

the working set size. Cache in most state-of-the-art machines is either direct-mapped or small

set-associative. Thus, it su�ers from considerable conict misses, thereby degrading the overall

performance [6, 12]. To reduce conict misses, copying [12, 25] and padding [16, 20] techniques with

tiling have been proposed. However, most of these approaches target mainly the cache performance,

paying less attention to the Translation Look-aside Bu�er (TLB) performance. As problem sizes

become larger, TLB performance becomes more signi�cant. If TLB thrashing occurs, the overall

performance will be drastically degraded [23]. Hence, both TLB and cache must be considered in

optimizing application performance.

Most previous optimizations, including tiling, concentrate on single-level cache [6, 12, 16, 20,

25]. Multi-level memory hierarchy has been considered by a few researchers. For improving multi-

level memory hierarchy performance, a new compiler technique is proposed in [27] that transforms

loop nests into recursive form. However, only multi-level caches were considered [21, 27] with no

emphasis on TLB. It was proposed in [13] that cache and TLB performance be considered in concert

to select the tile size. In this analysis, TLB and cache were assumed to be fully-set associative.

However, the cache is direct or small set-associative in most of the state-of-the-art platforms.

Some recent work [4, 11, 12, 17, 18, 25] proposed changing the data layout to match the

data access pattern, to reduce cache misses. It was proposed in [11] that both data and loop

transformation be applied to loop nests for optimizing cache locality. In [4], conventional (row or

column-major) layout is changed to a recursive data layout, referred to as Morton layout, which

matches the access pattern of recursive algorithms. This data layout was shown to improve the

memory hierarchy performance. This was con�rmed through experiments; we are not aware of any

formal analysis.

The ATLAS project [26] automatically tunes several linear algebra implementations. It uses

block data layout with tiling to exploit temporal and spacial locality. Input data, originally in

column major layout, is re-mapped into block data layout before the computation begins. The

combination of block data layout and tiling has shown high performance on various platforms.

However, the selection of the optimal block size is done empirically at compile time by running

several tests with di�erent block sizes.

1

WallacJR
113

In this paper, we study block data layout as a data transformation to improve memory hierarchy

performance. In block data layout, a matrix is partitioned into sub-matrices called blocks. Data

elements within one such block are mapped onto contiguous memory. These blocks are arranged in

row-major order. First, we analyze the intrinsic TLB performance of block data layout. We then

analyze the TLB and cache performance using tiling and block data layout. Based on the analysis,

we propose a block size selection algorithm. Morton data layout is also discussed as a variant of

block data layout. The contributions of this paper are as follows:

� We present a lower bound analysis of TLB performance. Further, we show that block data

layout intrinsically has better TLB performance than row-major layout (Section 2). As an

abstraction of matrix operations, the cost of accessing all rows and all columns is analyzed.

Compared with row major layout, we show that the number of TLB misses is improved by

O(
p
Pv) where Pv is the page size.

� We present TLB and cache performance analysis when tiling is used with block data (Sec-

tion 3.1 and 3.2). In tiled matrix multiplication, block data layout improves the number of

TLB misses by a factor of B, where B is the block size. Cache performance analysis is also

presented. We validate our analysis through simulations using SimpleScalar [2].

� On the basis of our cache and TLB analysis, we propose a block size selection algorithm

(Section 3.3). The best block sizes found by ATLAS fall in the range given by our algorithm.

� We validate our analysis through simulations and measurements using matrix multiply, LU

decomposition and Cholesky factorization (Section 4).

� We compare the performance of block data layout and Morton data layout. Block size se-

lection for Morton data layout is limited. This limitation causes the performance of Morton

data layout to be worse than that of block data layout. Experimental results on UltraSparc

II and Pentium III show that matrix multiplication and LU decomposition executions using

block data layout were up to 15.8% faster than that obtained using Morton data layout.

The rest of this paper is organized as follows. Section 2 describes block data layout and gives

analysis of its TLB performance. Section 3 discusses the TLB and cache performance when tiling

and block data layout are used in concert. A block size selection algorithm is described based

on this analysis. Section 4 shows simulation and experimental results. Concluding remarks are

presented in Section 5.

2 Block Data Layout and TLB Performance

In this paper, we assume the architecture parameters to be �xed (e.g. cache size, cache line size,

page size, TLB entry capacity, etc.). The following notations are used in this paper. Stlb denotes

the number of TLB entries. Pv denotes virtual page size. It is assumed that the TLB is fully

set-associative with Least-Recently-Used(LRU) replacement policy. Block size is B � B, where it

is assumed B2 = kPv . Sci is the size of the i
th level cache. Its line size is denoted as Lci. Cache is

assumed to be direct-mapped and its replacement policy is also LRU.

2

WallacJR
114

640 1 5

16 17 20 21

32 33 36 37

40 41 44 45

34 35 38 39

42 43 46 47

48 49 52 53

56 57 60 61

50 51 54 55

58 59 62 63

10 11 14 15

26 27 30 31

8 9 12 13

24 25 28 29

2 3 7

18 19 22 23

(a) Row-major layout

6

40 1 5

16 17 20 21

32 33 36 37 40 41 44 45

34 35 38 39 42 43 46 47

48 49 52 53 56 57 60 61

50 51 54 55 58 59 62 63

10 11 14 15

26 27 30 31

8 9 12 13

24 25 28 29

2 3 7

18 19 22 23

(b) Block data layout

6

40 1 5 16 17 20 21

32 33 36 37

40 41 44 45

34 35 38 39

42 43 46 47

48 49 52 53

56 57 60 61

50 51 54 55

58 59 62 63

10 11 14 15 26 27 30 31

8 9 12 13 24 25 28 29

2 3 7 18 19 22 23

I II

III IV

(c) Morton data layout

Figure 1: Various data layouts: block size 2� 2 for (b) and (c)

In Section 2, we analyze the TLB performance of block data layout. We show that block data

layout has better intrinsic TLB performance than conventional data layouts.

2.1 Block Data Layout

To support multi-dimensional array representations, most programming languages provide a map-

ping function, which converts an array index to a linear memory address. In current programming

languages, the default data layout is row-major or column-major, denoted as canonical layouts [5].

Both row-major and column-major layouts have similar drawbacks. For example, consider a large

matrix stored in row-major layout. Due to large stride, column accesses can cause cache conicts.

Further, if every row in a matrix is larger than the size of a page, column accesses can cause TLB

trashing, resulting in drastic performance degradation.

In block data layout, a large matrix is partitioned into sub-matrices. Each sub-matrix is a

B � B matrix and all elements in the sub-matrix are mapped onto contiguous memory locations.

The blocks are arranged in row-major order. Another data layout of recent interest is Morton

data layout [4]. Morton data layout divides the original matrix into four quadrants and lays out

these sub-matrices contiguously in the memory. Each of these sub-matrices is further recursively

divided and laid out in the same way. At the end of recursion, elements of the sub-matrix are

stored contiguously. This is similar to the arrangement of elements of a block in block data layout.

Morton data layout can thus be considered as a variant of the block data layout. They only di�er

in the order of blocks. Figure 1 shows block data layout and Morton data layout with block size

2� 2. Due to the similarity, the following TLB analysis holds true for Morton data layout also.

2.2 TLB Performance of Block Data Layout

In this section, we present a lower bound on the TLB misses for any data layout. We discuss

the intrinsic TLB performance of block data layout using a generic access pattern. We give an

analysis on the TLB performance of block data layout and show improved performance compared

with conventional layouts. Throughout this section, we consider an N �N array.

3

WallacJR
115

WallacJR

2.2.1 A Lower Bound on TLB Misses

In general, most matrix operations consist of row and column accesses, or permutations of row and

column accesses. In this section, we consider an access pattern where an array is accessed �rst

along all rows and then along all columns. The lower bound analysis of TLB misses incurred in

accessing the data array along all the rows and all the columns is as follows.

Theorem 2.1 For accessing an array along all the rows and then along all the columns, the asymp-

totic minimum number of TLB misses is given by 2 N
2

p
Pv
.

Proof: Consider an arbitrary mapping of array elements to pages. Let Ak = fij at least one

element of row i is in page k g: Similarly, let Bk = fjj at least one element of column j is in page

k g: Let ak = jAkj and bk = jBk j. Note that ak � bk � Pv : Using the mathematical identity that

the arithmetic mean is greater than or equal to the geometric mean (ak + bk � 2
p
Pv), we have:

N
2

PvX
k=1

(ak + bk) � 2
N2

Pv

p
Pv:

Let xi (yj) denote the number of pages where elements in row i (column j) are scattered. The

number of TLB misses in accessing all rows consecutively and then all columns consecutively is

given by Tmiss �
P

N

i=1(xi � O(Stlb)) +
P

N

j=1(yj � O(Stlb)): O(Stlb) is the number of page entries

required for accessing row i (column j) that are already present in the TLB. Page k is accessed

ak times by row accesses, thus,
P

N

i=1 xi =
PN

2

Pv

k=1 ak. Similarly,
P

N

j=1 yj =
PN

2

Pv

k=1 bk. Therefore, the

total number of TLB misses is given by

Tmiss �

N
2

PvX
k=1

(ak + bk)� 2N �O(Stlb) � 2� N2

p
Pv

� 2N �O(Stlb):

As the problem size (N) increases, the number of pages accessed along one row (column) becomes

larger than the size of TLB (Stlb). Thus the number of TLB entries that are reused is reduced

between two consecutive row (column) accesses. Therefore the asymptotic minimum number of

TLB misses is given by 2 N
2

p
Pv

. �
We obtained a lower bound on TLB misses for any layout when data are accessed along all

rows and then along all columns. This lower bound of TLB misses also holds when data is accessed

along an arbitrary permutation of all rows and columns.

Corollary 2.1 For accessing an array along an arbitrary permutation of row and column accesses,

the asymptotic minimum number of TLB misses is given by 2 N
2

p
Pv
.

2.2.2 TLB Performance

In this section, we consider the same access pattern as discussed in Section 2.2.1. Consider a given

N �N array stored in a canonical layout. Without loss of generality, canonical layout is assumed

4

WallacJR
116

Table 1: Comparison of TLB misses

(a) Along all rows and then all columns

Layout 1024 2048 4096

Block Layout 2081 81794 1196033

Morton Layout 2072 274473 1081466

Canonical Layout 1049601 4198401 16793601

(b) Arbitrary permutation of row and column accesses

Layout 1024 2048 4096

Block Layout 64140 273482 1080986

Morton Layout 64257 273477 1080955

Canonical Layout 1053606 4208690 16822675

(c) Arbitrary permutation of all rows followed by arbitrary permutation of all columns accesses

Layout 1024 2048 4096

Block Layout 64501 274473 1080465

Morton Layout 64813 274472 1081469

Canonical Layout 1053713 4208681 16822395

to be row-major layout. During the �rst pass (row accesses), the memory pages are accessed

consecutively. Therefore, TLB misses caused by row accesses is equal to N
2

Pv
. During the second

pass (column accesses), elements along the column are assigned to N di�erent pages. Hence, a

column access causes N TLB misses. Since N � Stlb, all N column accesses result in N2 TLB

misses. The total number of TLB misses caused by all row accesses and all column accesses is thus
N

2

Pv
+N2. Therefore, in canonical layout, TLB misses drastically increase due to column accesses.

Compared with canonical layout, block data layout has better TLB performance. The following

theorem shows that block data layout minimizes the number of TLB misses.

Theorem 2.2 For accessing an array along all the rows and then along all the columns, block data

layout with block size
p
Pv �

p
Pv minimizes the number of TLB misses.

Detailed proof of this theorem is presented in Appendix A. In general, the number of TLB misses

for a B � B block data layout is kN
2

B
+ N

2

B
. It is reduced by a factor of

(Pv+1)B

Pv(k+1)
(� B

k+1
) when

compared with canonical layout. When B =
p
Pv (k = 1), this number approaches the lower

bound shown in Theorem 2.1.

This theorem holds true even when data in block data layout is accessed along an arbitrary

permutation of all rows and columns.

Corollary 2.2 For accessing an array along an arbitrary permutation of rows and columns, block

data layout with block size
p
Pv �

p
Pv minimizes the number of TLB misses.

Similar to Theorem 2.2 and Corollary 2.2, the number of TLB misses is minimized when blocks

are stored in Morton data layout and elements are accessed along rows and columns.

Corollary 2.3 For accessing an N � N array along along all the rows and then along all the

columns (or along an arbitrary permutation of rows and columns), Morton data layout with block

size
p
Pv �

p
Pv minimizes the number of TLB misses.

To verify our analysis, simulations were performed using the SimpleScalar simulator [2]. It is

assumed that the page size is 8KByte and the data TLB is fully set-associative with 64 entries

5

WallacJR
117

for kk=0 to N by B
 for jj=0 to N by B
 for i=0 to N
 for k=kk to min(kk+B-1,N)
 r = X(i,k)
 for j=jj to min(jj+B-1,N)
 Z(i,j) += r*Y(k,j)

(a) 5-loop tiled matrix multiplication

for jj=0 to N by B
 for kk=0 to N by B
 for ii=0 to N by B
 for i=ii to min(ii+B-1,N)
 for k=kk to min(kk+B-1,N)
 r = X(i,k)
 for j=jj to min(jj+B-1,N)
 Z(i,j) += r*Y(k,j)

(b) 6-loop tiled matrix multiplication

Figure 2: Tiled matrix multiplication

(similar to the data TLB in UltraSparc 2.) Double precision data points are assumed. The block

size is set to 32. Table 1 shows the comparison of TLB misses using block data layout with using

canonical layout. Table 1 (a) shows the TLB misses for the \�rst all rows and then all columns"

access. For small problem sizes, TLB misses with block data layout are considerably less than those

with canonical layout. This is due to the fact that TLB entries used in a column(row) access are

almost fully reused in the next column(row)access. For a problem size of 1024 � 1024, a 504.37

times improvement in the number of TLB misses is obtained with block data layout. This number

is much less than the lower bound obtained from Theorem 2.1. This is because the TLB entries are

reused for this problem size. For larger problem sizes the TLB entries cannot be reused. The total

number of TLB misses approaches the lower bound. For these large problem sizes, TLB misses

with block data layout are upto 16 times less compared with canonical layout.

To verify Corollary 2.1 and 2.2, two sets of access patterns were simulated: an arbitrary

permutation of all rows and columns, and an arbitrary permutation of all rows followed by an

arbitrary permutation of all columns. With these access patterns, TLB entries referenced during

one row(column) access are not reused when accessing the next row(column). The number of TLB

misses with block data layout approaches the lower bound on TLB misses. The results are shown

in Table 1 (b) and (c). Morton data layout shows a performance similar to block data layout.

Even though block data layout has better TLB performance compared with canonical layouts

with generic access pattern, it alone does not reduce cache misses. The data access pattern of

tiling matches well with block data layout. In the following section, we discuss the performance

improvement of TLB and caches when block data layout is used in conjunction with tiling.

3 Tiling and Block Data Layout

Tiling is a well-known optimization technique that improves cache performance. Tiling transforms

the loop nest so that temporal locality can be better exploited for a given cache size. Consider an

N � N matrix multiplication represented as Z = XY. The working set size for the usual 3-loop

computation is N2 + 2N . For large problems, the working set size is larger than the cache size,

resulting in severe cache thrashing. To reduce cache capacity misses, tiling transforms the matrix

multiplication to a 5-loop nest tiled matrix multiplication (TMM) as shown in Figure 2(a). The

working set size for this tiled computation is B2 + 2B. To e�ciently utilize block data layout, we

consider a 6-loop TMM as shown in Figure 2(b) instead of a 5-loop TMM.

6

WallacJR
118

B

B

(a) Tiled row access

B

B

(b) Tiled column access

Figure 3: Tiled accesses

3.1 TLB Performance

In this section, we show the TLB performance improvement of block data layout with tiling. To

illustrate the e�ect of block data layout on tiling, we consider a generic access pattern abstracted

from tiled matrix operations. The access pattern is shown in Figure 3. The tile size is equal to B.

Figure 3.

With canonical layout, TLB misses will not occur when accessing consecutive tiles in the same

row, if B � Stlb. Hence, the tiled accesses along the rows generate N
2

Pv
TLB misses. This is the

minimum number of TLB misses incurred in accessing all the elements in a matrix. However,

tiled accesses along columns cause considerable TLB misses. B page table entries are necessary

for accessing each tile. For all tiled column accesses, the total number of TLB misses is Tcol =

B � N

B
� N

B
= N

2

B
: It is reduced by a factor of B compared with the number of TLB misses for all

column accesses without tiling (see Section 2.2).

The total number of TLB misses are further reduced when block data layout is used in concert

with tiling, as shown in Theorem 3.1. Throughout this paper, the block size of block data layout is

assumed to be the same as the tile size so that the tiled access pattern matches block data layout.

In block data layout, a 2-dimensional block is mapped onto 1-dimensional contiguous memory

locations. A block extends over several pages, as shown in Figure 4 for an example of block size

B2 = 1:7Pv. To analyze TLB misses for column accesses using block data layout, the average

number of pages in a block is required.

vP

vPB 7.12 =

vP3.0

(a) over 2 pages

vP

vPB 7.12 =

vP3.0

(b) over 3 pages

Figure 4: Blocks extending over page boundaries

Lemma 3.1 Consider an array stored in block data layout with block size B�B, where B2 = kPv.

The average number of pages per block is given by k + 1.

Proof: For block size kPv , assume that k = n+f , where n is a non-negative integer and 0 � f < 1.

7

WallacJR
119

Table 2: TLB misses for all tiled row accesses followed by all tiled column accesses

Layout 1024 2048 4096

Block Layout 2081 12289 49153

Canonical Layout 33794 139265 561025

The probability that a block extends over n + 1 contiguous pages is 1� f . The probability that a

block extends over n+ 2 contiguous pages is f . Therefore, the average number of pages per block

in block data layout is given by: (1� f)� (n+ 1) + f � (n+ 2) = k + 1: �

Theorem 3.1 Assume that an N � N array is stored using block data layout. For tiled row and

column accesses, the total number of TLB misses is (2 + 1
k
)N

2

Pv
.

Proof: Blocks in block data layout are arranged in row-major order. So, a page overlaps between

two consecutive blocks that are in the same row. The page is continuously accessed. The number

of TLB misses caused by all tiled row accesses is thus N
2

Pv
, which is the minimum number of TLB

misses. However, no page overlaps between two consecutive blocks in the same column. Therefore,

each block along the same column goes through (k+1) di�erent pages according to Lemma 3.1. The

number of TLB misses caused by all tiled column accesses is thus Tcol = (k+1)�N

B
�N

B
= (k+1) N

2

kPv
:

Therefore, the total TLB misses caused by all row and all column accesses is Tmiss = (2+ 1
k
)N

2

Pv
: �

For tiled access, the number of TLB misses using canonical layout is N
2

Pv
+ N

2

B
, where B =

p
kPv.

Using Theorem 3.1, compared with canonical layout, block data layout reduces the number of TLB

misses by
p
kPv+

p
k

2k+1 = B+
p
k

2k+1 .

To verify our analysis, simulations for tiled row and column accesses were performed using

the SimpleScalar simulator. The simulation parameters are equal to those in Section 2. A 32� 32

block size was considered. The block size is the same as the page size. Table 2 shows TLB misses

for 3 di�erent cases. For problem sizes of 2048� 2048 and 4096� 4096, the number of TLB misses

conform our analysis in Theorem 3.1. The number of TLB misses with block data layout is 91%

less than that with canonical layout. For a problem size of 1024 � 1024, TLB misses with block

data layout is 2081, which is very close to the minimum number of TLB misses (2048). This is a

special case in which each block starts on a new page.

A similar analytical result can be derived for real applications. Consider the 5-loop TMM

with canonical layout in Figure 2 (a). Array Y is accessed in a tiled row pattern. On the other

hand, arrays X and Z are accessed in a tiled column pattern. A tile of each array is used in the

inner loops (i; k; j). The number of TLB misses for each array is equal to the average number of

pages per tile, multiplied by the number of tiles accessed in the outer loops (kk; jj). The average

number of pages per tile is B + B
2

Pv
. Therefore, the total number of TLB misses is given by:

2N3(1
B2 +

1
BPv

) +N2(1
B
+ 1

Pv
).

Consider the 6-loop TMM on block data layout as shown in Figure 2 (b). A B � B tile of

each array is accessed in the inner loops (i; k; j) with block layout. The number of TLB misses for

each array is equal to the average number of pages per block multiplied by the number of blocks

8

WallacJR
120

0

50

100

150

200

28 32 36 40
Block size

T
LB

 m
is

se
s

(t
ho

us
an

ds
)

From simulation

Estimated

Figure 5: Comparison of TLB misses

from simulation and estimation

0

500

1000

1500

2000

2500

3000

28 32 36 40
Block size

T
LB

 m
is

se
s

(t
ho

us
an

ds
)

Tiling+BDL

Tiling only

Figure 6: Comparison of TLB misses

using tiling+BDL and tiling only

accessed in the outer loops (ii; kk; jj). According to Lemma 3.1, the average number of pages per

block is B
2

Pv
+ 1(= k + 1). Therefore, the total number of TLB misses (TM) is

TM =

B2

Pv
+ 1

!(
2

�
N

B

�3
+

�
N

B

�2)
= 2N3

�
1

BPv
+

1

B3

�
+N2

�
1

Pv
+

1

B2

�
: (1)

Compared with the 5-loop TMM with canonical layout, TLB misses decrease by a factor of O(B)

using the 6-loop TMM. Note that the 6-loop TMM uses block data layout.

To verify our TLB miss estimation, simulations on the 6-loop TMM were performed. The

problem size was �xed at 1024� 1024. Simulation parameters were the same as those in Section 2.

Figure 5 compares our estimations (given by Eq. (1)) with the simulation results. Figure 6 shows

that block data layout reduced TLB misses considerably compared with tiling.

3.2 Cache Performance

For a given cache size, tiling transforms the loop nest so that the temporal locality can be better

exploited. This reduces the capacity misses. However, since most of the state-of-the-art archi-

tectures have direct-mapped or small set-associative caches, tiling can su�er from considerable

conict misses that degrade the overall performance. Figure 7 (a) shows cache conict misses.

These conict misses are determined by cache parameters such as cache size, cache line size and

set-associativity, and runtime parameters such as array size and block size. Performance of tiled

computations is thus sensitive to these runtime parameters.

If the data layout is reorganized from a canonical layout to a block layout (assuming tile size

is same as block size) before tiled computations start, the entire data that is accessed during a

tiled computation will be localized in a block. As shown in Figure 7 (b), a self interference miss

does not occur if the block is smaller than the cache since all elements in a block can be stored in

contiguous memory locations.

9

WallacJR
121

������

��
��
��

CACHE

(a) Canonical layout

CACHE

��
��
��

����
(b) Block data layout

Figure 7: Example of conict misses

0

10

20

30

40

50

36 40 44

Block size

C
ac

he
 m

is
se

s
(m

ill
io

ns
)

From simulation

Estimated

Figure 8: Comparison of cache misses from simulation and estimation for 6-loop TMM

In general, cache miss analysis for direct mapped cache with canonical layout is complicated

because the self interference misses cannot be quanti�ed easily. Cache performance analysis of tiled

algorithm was discussed in [12]. The cache performance of tiling with copying optimization was

also presented. We observe that the behavior of cache misses for tiled access patterns on block

layout is similar to that of tiling with copying optimization on canonical layout. We have derived

the total number of cache misses for 6-loop TMM (which uses block data layout). Detailed proof

can be found in Appendix B. For ith level cache with line size Lci and cache size Sci, the total

number of cache misses (CMi) is:

CMi �

8>>>><
>>>>:

N
3

Lci

�
1
B

�
2 +

(3Lci+2L
2

ci
)

Sci

�
+ 1

N
+ 4B+6Lci

Sci

�
for B <

p
Sci

N
3

Lci

n
4B
Sci

+ 2
B
� 2Sci

B2 + 2� 1
N
+ 6Lci

Sci

o
for

p
Sci � B <

p
2Sci

N
3

Lci

n
1 + 2

B
+
�
1 + Lc

B

��
B+2Lc
Sci

�o
for

p
2Sci � B

(2)

To verify the cache miss estimations, we conducted simulations using SimpleScalar for 6-loop TMM

with block data layout. The problem size was �xed at 1024� 1024. A 16KByte direct mapped

10

WallacJR
122

12 24 36 48 60 72
Block size

30

32

34

36

38

40

42

44

E
xe

cu
tio

n
tim

e
(s

ec
s)

Figure 9: Execution time of TMM of size 1024� 1024

cache was assumed (similar to L1 data cache in UltraSparc II). Figure 8 compares our estimated

values (given by Eq. (2)) with the simulation results.

3.3 Block Size Selection

To test the e�ect of block size, experiments were performed on several platforms. Figure 9 shows the

execution time of a 6-loop TMM with size 1024�1024 on UltraSparc II (400 MHz) as a function of

block size. It can be observed that block size selection is signi�cant for achieving high performance.

With canonical data layout, tiling technique is sensitive to problem and tile sizes. Several GCD

based tile size selection algorithms [6, 8, 12] were proposed to optimize tiled computation. However,

their performance is still sensitive to the problem size. In [13], TLB and cache performance were

considered in concert. This approach showed better performance than algorithms that separately

consider cache or TLB. However, all these approaches are based on canonical data layout. On the

other hand, ATLAS [26] utilizes block data layout. However, the best block size is determined

empirically at compile time by evaluating the actual performance of the code with a wide range of

block sizes.

In a multi-level memory hierarchy system, it is di�cult to predict the execution time (Texe) of

a program. But, Texe is proportional to the total miss cost of TLB and cache. In order to minimize

Texe, we will evaluate and minimize the total miss cost for both TLB and l-level caches. We have:

MC = TM �Mtlb +

lX
i=1

CMiHi+1 (3)

where MC denotes the total miss cost, CMi is the number of misses in the ith level cache, TM is

the TLB miss penalty, Hi is the cost of a hit in the ith level cache, and Mtlb is the penalty of a

TLB miss. The (l + 1)th level cache is the main memory. It is assumed that all data reside in the

main memory (CMl+1 = 0). Using the derivative of MC with respect to the block size, we can

�nd the optimal block size that minimizes the overall miss cost.

11

WallacJR
123

0 20 40 60 80 100
0

0.5

1

1.5

2x 10
9

Block size

M
is

s
co

st
 (

cy
cl

es
)

B
tc1

sqrt(S
c1

)

TLB miss cost
L1 miss cost
L2 miss cost

(a) Miss cost of TLB, L1, and L2 cache

(Btc1 is obtained using Eq.(4))

0 20 40 60 80 100
0

2

4

6

8

10x 10
9

Block size

T
ot

al
 m

is
s

co
st

 (
cy

cl
es

)

H
3
/H

2
 = 4, 8, ... 40

M
tlb

 = H
3

H
3
/H

2
 = 4

H
3
/H

2
 = 40

(b) Total miss cost with various L2 miss

penalty

Figure 10: Miss cost estimation for 6-loop TMM (UltraSparc II parameters)

For a simple 2-level memory hierarchy that consists of only one level cache and TLB, the total

miss cost (denoted as MCtc1) in Eq. (3) reduces to:

MCtc1 = TM �Mtlb + CM �H2;

where H2 is the access cost of main memory. In the above estimation, Mtlb and CM are substituted

with Eq.(1) and Eq.(2), respectively. Using the derivative of MC, the optimal block size (Btc1)

that minimizes the total miss cost caused by L1 cache and TLB misses is given as

Btc1 �

vuut�2L1cMtlb

Pv
+
h
2 +

3Lc1+2L
2

c1

Sc1

i
H2

�
Sc1

4H2

: (4)

We now extend this analysis to determine a range for optimal block size in a multi-level memory

hierarchy that consists of TLB and two levels of cache. The miss cost is classi�ed into two groups:

miss cost caused by TLB and L1 cache misses and miss cost caused by L2 misses. Figure 10 (a)

and (b) show the miss cost estimated through Eqs.(1) and (2). Fig. 10(a) is the separated TLB, L1,

and L2 miss cost, using UltraSparc II parameters. Fig. 10(b) shows the variance of the estimated

total miss costs as the ratio between L1 cache miss penalty (H2) and L2 cache miss penalty (H3)

varies. Using Eq.(4), we discuss the total miss cost for 3 ranges of block size:

Lemma 3.2 For B < Btc1, MC(B) > MC(Btc1).

Proof: Using the derivatives of TLB and cache miss equations (Eq.(1) and (2)), it can be easily

veri�ed that dMCtc1

dB
< 0 and dCM2

dB
< 0 for B < Btc1. This is shown in Figure 10(a). For B < Btc1,

TLB, L1, and L2 miss cost increase as block size decreases, thereby increasing the total miss cost.

Therefore, the optimal block size cannot be in the range B < Btc1. �

Lemma 3.3 For B >
p
Sc1, MC(B) > MC(

p
Sc1).

12

WallacJR
124

Proof: In the range B >
p
Sc1, TLB miss cost is optimized by tiling and block data layout.

However, the change in TLB miss cost is negligible as the block size increases. Since block size is

larger than L1 cache size, self-interferences occur in this range. The number of L1 cache misses

drastically increases as shown in Figure 10(a). For
p
Sc1 � B <

p
2Sc1, the ratio of derivatives of

Eq.(2) for L1 and L2 misses is as follows:

�����H2
dCM1

dB

H3
dCM2

dB

����� = H2

H3

�������
N

3

Lc1

h
4
Sc1

+ 4Sc1
B3 � 2

B2

i
N3

Lc2

h
4
Sc2

�
�
2 +

3Lc2+2L
2

c2

Sc2

�
1
B2

i
������� :

Let B2 = �Sc1 (1 � � < 2). Note that Lc2 � Sc2.�����H2
dCM1

dB

H3
dCM2

dB

����� � H2

H3

�Lc2
Lc1

� Sc2

Sc2 � 2�Sc1
�
�
2�� 1 +

2p
�

p
Sc1

�
>
H2

H3

�Lc2
Lc1

� Sc2

Sc2 � 4Sc1
�
�
3 +

p
2 �
p
Sc1

�

In a general memory hierarchy system, Sc2

Sc2�4Sc1
� 1 since Sc1 � Sc2. Also,

Lc2

Lc1
� 1 and

p
2Sc1 >

H3
H2

. Therefore, �����H2
dCM1

dB

H3
dCM2

dB

����� > 1

Thus, although the number of L2 cache misses decreases (dCM2

dB
< 0), the total miss cost increases

for
p
Sc1 � B <

p
2Sc1 because the increase in L1 cache miss cost is larger than the decrease in

L2 cache miss cost. For B �
p
2Sc1, there is no reuse in L1 cache. Thus, the L1 cache miss cost

saturates. Figure 10(b) shows the change of the total miss cost as the ratio of H3

H2

varies. Even

though L2 miss penalty is 40 times that of L1 miss penalty, TM(B) > TM(
p
Sc1) for B �

p
2Sc1,

because L1 self-interference miss cost is dominantly large for B �
p
2Sc1. Therefore, the optimal

block size cannot be in the range B >
p
Sc1. �

Theorem 3.2 The optimal block size Bopt satis�es Btc1 � Bopt <
p
Sc1.

Proof: This follows from Lemma 3.2 and 3.3. Therefore, an optimal block size that minimizes

the total miss cost is located in

Btc1 � Bopt <
p
Sc1: (5)

We select a block size that is a multiple of Lc1 (L1 cache line size) in this range. �
To verify our approach, we conducted simulations using UltraSparc II parameters (Table 3).

Figure 11 shows the simulation results of 6-loop TMM using block data layout. As discussed, the

number of TLB and L2 misses decreased as block size increases. Also, the minimum number of L1

misses was obtained for B = 36 and then drastically increased for B > 45. Figure 12 shows the

total miss cost. For UltraSparc II, Btc1 = 32:2,
p
Sc1 = 45:3, and Lc1 = 4. Theorem 3.2 suggests

the range for optimal block size is to be 36{44. Simulation results show that the optimal block size

for this architecture was 44.

We also tested ATLAS on UltraSparc II. Through a wide search ranging from 16 to 44, ATLAS

found 36 and 40 as the optimal block sizes. These blocks lie in the range given by Eq. (5). We

further tested 6-loop TMM with respect to di�erent problem and block sizes. For each problem

13

WallacJR
125

8 20 32 44 56
Block size

0

0.5

1.0

1.5

T
LB

 m
is

se
s

(m
ill

io
ns

)

(a) TLB miss

8 20 32 44 56
Block size

0

50

100

150

200

250

C
ac

he
 m

is
se

s
(m

ill
io

ns
)

(b) L1 miss

8 20 32 44 56
Block size

0

5

10

15

20

L2
 c

ac
he

 m
is

se
s

(m
ill

io
ns

)

(c) L2 miss

Figure 11: Simulation results of 6-loop TMM

0

200

400

600

800

1000

1200

1400

1600

8 20 32 44 56

Block Size

T
ot

al
 M

is
s

C
os

t (
m

ill
io

n
cy

cl
es

)

TLB miss cost L1 miss cost L2 miss cost

Search range of ATLAS

Our range

Figure 12: Total miss cost for 6-loop TMM

14

WallacJR
126

0 20 40 60
1000

1100

1200

1300

1400

1500

1600

P
ro

bl
em

 S
iz

e

Our Range

Figure 13: Optimal block sizes for 6-loop TMM

size, we performed experiments by testing block sizes ranging from 8{80. In these tests, we found

that the optimal block size for each problem size was in the range given by Eq. (5) as shown in

Figure 13. These experiments con�rm that our approach proposes a reasonably good range for

block size selection.

4 Experimental Results

To verify our analysis, we performed simulations and experiments on the following applications:

tiled matrix multiplication(TMM), LU decomposition, and Cholesky factorization(CF). The per-

formance of tiling with block data layout (tiling+BDL) is compared with other optimization

techniques: tiling with copying(tiling+copying), and tiling with padding(tiling+padding). For

tiling+BDL, the tile size (of the tiling technique) is chosen to be the same as the block size of

the block data layout. Input and output is in canonical layout. All the cost in performing data

layout transformations (from canonical layout to block data layout and vice versa) is included in

the reported results. As stated in [12], we observed that the copying technique cannot be applied

e�ciently to LU and CF applications, since copying overhead o�sets the performance improve-

ment. Hence we do not consider tiling+copying for these applications. In all our simulations and

experiments, the data elements are double-precision.

4.1 Simulations

To show the performance improvement of TLB and caches using tiling+BDL, simulations were

performed using the SimpleScalar simulator [2]. The problem size was 1024� 1024. Two sets of

architecture parameters were used: UltraSparc II and Pentium III. The parameters are shown in

Table 3.

Figure 14 compares the TMM simulations of di�erent techniques, based on UltraSparc II

parameters. Tiling+BDL has less L1 and L2 cache misses when compared with other techniques.

Block size 32 leads to increased L1 and L2 cache misses for block data layout because of the

15

WallacJR
127

0

0.5

1

1.5

2

2.5

3

28 32 36 40

Block Size

T
L

B
 m

is
se

s
(m

ill
io

n
s)

Tiling+Copying
Tiling+BDL
Tiling+Padding

(a) TLB misses

0

20

40

60

80

100

120

28 32 36 40

Block Size

L
1

m
is

se
s

(m
ill

io
n

s)

Tiling+Copying
Tiling+BDL
Tiling+Padding

(b) L1 misses

0

2

4

6

8

10

12

14

28 32 36 40
Block Size

L
2

m
is

se
s

(m
ill

io
n

s)

Tiling+Copying
Tiling+BDL
Tiling+Padding

(c) L2 misses

Figure 14: Simulation results for TMM using UltraSparc II parameters

0

100

200

300

400

500

600

700

800

900

1000

Tiling+Copying Tiling+BDL Tiling+Padding

T
o

ta
l M

is
s

C
o

st
 (

m
ill

io
n

 c
yc

le
s)

L2 miss cost
L1 miss cost
TLB miss cost

Figure 15: Total miss cost for TMM using UltraSparc II parameters

16

WallacJR
128

0

2

4

6

8

10

12

14

16 24 32 40 48

Block size

T
LB

 m
is

se
s

(m
ill

io
ns

)

Tiling+BDL
Tiling+Padding

(a) TLB misses

0

20

40

60

80

100

120

16 24 32 40 48

Block size
L1

 m
is

se
s

(m
ill

io
ns

)

Tiling+BDL

Tiling+Padding

(b) L1 cache misses

0

20

40

60

80

100

120

16 24 32 40 48

Block size

L2
 m

is
se

s
(m

ill
io

ns
)

Tiling+BDL

Tiling+Padding

(c) L2 cache misses

Figure 16: Simulation results for LU using Pentium III parameters

0

100

200

300

400

500

600

700

800

16 24 32 40 48

Block size

T
ot

al
 m

is
s

co
st

 (
m

ill
io

n
cy

cl
es

) L2 miss cost

L1 miss cost

TLB miss cost

(a) Tiling+Padding

0

100

200

300

400

500

600

700

800

16 20 24 28 32 36 40 44 48

Block size

T
ot

al
 m

is
s

co
st

 (
m

ill
io

n
cy

cl
es

)
L2 miss cost

L1 miss cost

TLB miss cost

(b) Tiling+BDL

Figure 17: E�ect of block size on LU decomposition using Pentium III parameters

cache conicts between di�erent blocks. Tiling+BDL reduced 91{96% of TLB misses as shown in

Figure 14(a). This con�rms our analysis presented in Section 3.1. Figure 15 shows the total miss

cost (calculated from Eq. (3)) for TMM using block size 40� 40. L1, L2, and TLB miss penalties

were assumed to be 6, 24, and 30 cycles, respectively. This �gure shows that tiling+BDL results

in the smallest total miss cost and that the TLB miss cost with tiling+BDL is negligible compared

with L1 and L2 miss costs. Figure 12 shows the e�ect of block size on the total miss cost for

TMM using tiling+BDL. As discussed in Section 3.3, the best block size (44) is in the range 36{44

suggested by our approach.

Figure 16 presents simulation results for LU using Intel Pentium III parameters. Similar to

TMM, the number of TLB misses for tiling+BDL was almost negligible compared with that for

tiling+padding as shown in Figure 16(a). For both techniques, L1 and L2 cache misses were reduced

considerably because of 4-way set-associativity. For tiling+padding, when the block size was larger

than L1 cache size, the padding algorithm in [16] suggested a pad size of 0. There is essentially no

17

WallacJR
129

1000 1200 1400 1600
0

20

40

60

80

100

120

E
xe

cu
tio

n
T

im
e

(S
ec

s)

Tiling+TSS
Tiling Only
Tiling+Padding
Tiling+Copying
Tiling+BDL

Figure 18: Execution time comparison of various techniques for TMM on Pentium III

padding e�ect, thereby drastically increasing L1 and L2 cache misses. Figure 17 shows the block

size e�ect on total miss cost using tiling+padding and tiling+BDL. Tiling+padding reduced L1 and

L2 cache miss costs considerably. However, TLB miss costs were still signi�cantly high, a�ecting

the overall performance. As discussed in Section 3.3, the suggested range for optimal block size is

32{44. Simulations validate that the optimal block size achieving the smallest miss cost locates in

the range selected using our approach.

4.2 Execution on real platforms

To verify our block size selection and the performance improvements using block data layout,

we performed experiments on several platforms as tabulated in Table 3. gcc compiler was used

in these experiments. The compiler optimization ags were set to \-fomit-frame-pointer -O3

-funroll-loops". Execution time was the user processor time measured by sys-call clock(). All

the data reported here is the average of 10 executions. The problem sizes ranged from 1000� 1000

to 1600� 1600.

Figure 18 shows the comparison of execution time of tiling+BDL with other techniques. The

performance of tiling+TSS (tile size selection algorithm [6]) shown in this �gure selects block size

based on GCD computation. Tiling solves the cache capacity miss problem but it cannot avoid

Table 3: Features of various experimental platforms

Platforms Speed L1 cache L2 cache TLB

(MHz) Size Line Ass. Size Line Ass. Entry page Ass.

(KB) (Byte) (KB) (Byte) (KB)

Alpha 21264 500 64 64 2 4096 64 1 128 8 128

UltraSparc II 400 16 32 1 2048 64 1 64 8 64

UltraSparc III 750 64 32 4 4096 64 4 512 8 2

Pentium III 800 16 32 4 512 32 4 64 4 4

18

WallacJR
130

conict misses. Conict misses are strongly related to the problem size and block size. This makes

tiling sensitive to problem size. As discussed on Section 3.2, block data layout greatly reduces

conict misses, resulting in smoother performance compared with others.

The e�ect of block size on tiling+BDL is shown in Figures 19{21. Various problem sizes

were tested and results on all these problems showed similar trends as in Figures 19{21. As an

illustration, the results for problem size of 1024 � 1024 are shown. As shown in Figures 19{21,

the optimal block sizes for Pentium III, UltraSparc II, Sun UltraSparc III and Alpha 21264 are 40,

44, 76, and 76 respectively. All these numbers are in the range given by our block size selection

algorithm. For example, the range for best block size on Alpha 21264 is 64{78. This con�rmed that

our block size selection algorithm proposes a reasonable range. As discussed earlier, block sizes 32

and 64 should be avoided (for use with block data layout) because the performance degrades due

to conict misses between blocks.

20 40 60 80 100
9.5

10

10.5

11

11.5

12

12.5

E
xe

cu
tio

n
tim

e
(s

ec
s)

(a) Alpha 21264

0 20 40 60 80
15

20

25

30

35

E
xe

cu
tio

n
tim

e
(s

ec
s)

(b) UltraSparc II

0 20 40 60 80 100
10

11

12

13

14

15

16

E
xe

cu
tio

n
tim

e
(s

ec
s)

(c) UltraSparc III

0 20 40 60 80
9

10

11

12

13

14

15

E
xe

cu
tio

n
tim

e
(s

ec
s)

(d) Pentium III

Figure 19: E�ect of block size on TMM

20 40 60 80 100
3

4

5

6

7

E
xe

cu
tio

n
tim

e
(s

ec
s)

(a) Alpha 21264

20 30 40 50 60
8.5

9

9.5

10

10.5

11

E
xe

cu
tio

n
tim

e
(s

ec
s)

(b) UltraSparc II

20 40 60 80 100
8

8.2

8.4

8.6

8.8

9

9.2

E
xe

cu
tio

n
tim

e
(s

ec
s)

(c) UltraSparc III

20 30 40 50 60
4

4.5

5

5.5

6
E

xe
cu

tio
n

tim
e

(s
ec

s)

(d) Pentium III

Figure 20: E�ect of block size on LU decomposition

20 40 60 80 100
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

E
xe

cu
tio

n
tim

e
(s

ec
s)

(a) Alpha 21264

20 30 40 50 60
3

3.5

4

4.5

5

E
xe

cu
tio

n
tim

e
(s

ec
s)

(b) UltraSparc II

20 40 60 80 100
1.8

1.9

2

2.1

2.2

E
xe

cu
tio

n
tim

e
(s

ec
s)

(c) UltraSparc III

20 30 40 50 60
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

E
xe

cu
tio

n
tim

e
(s

ec
s)

(d) Pentium III

Figure 21: E�ect of block size on Cholesky factorization

19

WallacJR
131

Figures 22{24 show the execution time comparison of tiling+BDL with tiling+copying and

tiling+padding. In these �gures, block size for tiling+BDL was given by our algorithm discussed

in Section 3.3. The tile size for the copying technique was given by the approach in [12]. The pad

size was selected by the algorithm discussed in [16]. Tiling+BDL technique is faster than using

other optimization techniques, for almost all problem sizes and on all the platforms.

1000 1200 1400 1600
5

10

15

20

25

30

35

40

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+Copying
Tiling+BDL

(a) Alpha 21264

1000 1200 1400 1600
10

20

30

40

50

60

70

80

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+Copying
Tiling+BDL

(b) UltraSparc II

1000 1200 1400 1600
10

15

20

25

30

35

40

45

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+Copying
Tiling+BDL

(c) UltraSparc III

1000 1200 1400 1600
0

10

20

30

40

50

60

70

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+Copying
Tiling+BDL

(d) Pentium III

Figure 22: Execution time of TMM

1000 1200 1400 1600
2

4

6

8

10

12

14

16

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(a) Alpha 21264

1000 1200 1400 1600
5

10

15

20

25

30

35

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(b) UltraSparc II

1000 1200 1400 1600
5

10

15

20

25

30

35

40

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(c) UltraSparc III

1000 1200 1400 1600
0

5

10

15

20

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(d) Pentium III

Figure 23: Execution time of LU decomposition

1000 1200 1400 1600
1

2

3

4

5

6

7

8

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(a) Alpha 21264

1000 1200 1400 1600
2

4

6

8

10

12

14

16

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(b) UltraSparc II

1000 1200 1400 1600
0

2

4

6

8

10

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(c) UltraSparc III

1000 1200 1400 1600
0

2

4

6

8

10

E
xe

cu
tio

n
tim

e
(s

ec
s)

Tiling+Padding
Tiling+BDL

(d) Pentium III

Figure 24: Execution time of Cholesky factorization

4.3 Block data layout and Morton data layout

Recently nonlinear data layouts have been considered to improve memory hierarchy performance.

One such layout is the Morton data layout(MDL) as de�ned in Section 2.1. Similar to block data

layout, elements within each block are mapped onto contiguous memory locations. However, Mor-

ton data layout uses a di�erent order to map blocks as shown in Figure 1. This order matches the

20

WallacJR
132

Table 4: Comparison of execution time of TMM on various platforms: All times are in seconds.

(a) Pentium III

Size iterative+BDL recursive+MDL

1024 10.37 10.98

1280 20.43 20.64

1408 27.06 28.21

1600 39.77 43.78

2048 83.27 87.64

(b) UltraSparc II

Size iterative+BDL recursive+MDL

1024 18.87 21.80

1280 36.17 40.63

1408 48.76 53.70

1600 70.44 81.61

2048 149.65 170.86

Table 5: Comparison of execution time of LU decomposition on various platforms: All times are

in seconds.

(a) Pentium III

Size iterative+BDL recursive+MDL

1024 4.15 4.43

1280 8.10 8.10

1408 10.85 11.57

1600 15.85 18.44

2048 33.58 35.90

(b) UltraSparc II

Size iterative+BDL recursive+MDL

1024 8.77 9.94

1280 18.97 18.54

1408 22.76 22.45

1600 33.51 35.58

2048 75.30 81.66

access pattern of recursive algorithms. In this section, we compare the performance of recursive al-

gorithms using MDL (recursive+MDL) with iterative tiled algorithms using BDL (iterative+BDL),

for matrix multiplication and LU decomposition. We show that the performance of recursive+MDL

is comparable with that of iterative+BDL if the block size of MDL lies in the optimal block size

range for BDL as given by our algorithm (Eq. (5) in Section 3.3). However, if the block size of

MDL is outside this range, recursive+MDL is slower than iterative+BDL.

Similar to block data layout, block size for Morton layout also plays an important role in the

performance. However, due to recursion, the choice of block sizes is limited. For an N �N matrix,

if the depth of recursion is d, the block size of MDL is given by BMDL = N

2d
: Such a block size

can lie outside the optimal range given by our approach. Our experiment results show that this

degrades the overall performance.

Experiments using TMM and LU were performed on UltraSparc II and Pentium III. Table 4

shows the execution time comparison of MM using iterative+BDL with recursive+MDL. For it-

erative+BDL, we selected the block size according to the algorithm discussed in Section 3.3. For

recursive+MDL, we tested various recursion depths (resulting in various basic block sizes) and used

the best for comparison. For problem size 1280 � 1280 and 1408 � 1408, optimal block sizes for

recursive+MDL were 40 and 44 respectively, which were in the range given by our algorithm, 36{44.

Both the layouts showed competitive performance for these cases. For problem size 1600� 1600,

recursive+MDL was up to 15.8% slower than iterative+BDL. Among possible choices of 25, 50,

and 100, the performance of recursive+MDL was optimized at block size 25, where 25 = 1600
25

. This

is because it is outside the optimal range speci�ed by our algorithm. Table 5 shows the execution

time comparison of tiled LU decomposition using BDL and recursive LU decomposition [27] using

MDL. These results con�rm our analysis.

21

WallacJR
133

5 Concluding Remarks

This paper studied a critical problem in understanding the performance of algorithms on state-

of-the-art machines that employ multi-level memory hierarchy. We showed that using block data

layout, TLB misses as well as cache misses are reduced considerably. Further, we proposed a tight

range for block size using our performance analysis. Our analysis matches closely with simulation

based as well as experimental results.

This work is part of the Algorithms for Data IntensiVe Applications on Intelligent and Smart

MemORies (ADVISOR) Project at USC [1]. In this project we focus on developing algorithmic

design techniques for mapping applications to architectures. Through this we understand and create

a framework for application developers to exploit features of advanced architectures to achieve high

performance.

Acknowledgment

We would like to thank Shriram Bhargava Gundala for careful reading of drafts of this work. We

also would like to thank Sriram Vajapeyam and Cauligi S. Raghavendra for their inputs on a

preliminary version of this work.

Appendix A TLB performance of block data layout

This section gives a detailed proof of Theorem 2.2 in Section 2.2. The theorem is repeated for

convenience:

Theorem For accessing an array along all the rows and then along all the columns, block data

layout with block size
p
Pv �

p
Pv minimizes the number of TLB misses.

Proof: Suppose the block size B2 = kPv. Two cases (for k � 1 and k � 1) are discussed separately.

Case I: k � 1. We consider three scenarios for this case.

1. N

B
> Stlb

Accesses to the �rst row cause N

B
TLB misses. However, these entries cannot be reused since

Stlb is small. Therefore, TLB misses caused by row accesses is Trow = N

B
�N . Similarly, TLB

misses caused by column accesses are Tcol =
N

B
� k �N . Therefore, the total number of TLB

misses is

Tmiss =
N2

B
+ k

N2

B
=

N2

p
Pv

(
1p
k
+
p
k):

To minimize the total TLB misses,

dTmiss

dk
=

N2

p
2Pv

� 1p
k
� (1� 1

k
):

Therefore, as k decreases, the total number of TLB misses decreases. The total number of

TLB misses is minimized when k = 1. Note that when B =
p
Pv (k = 1), the number of TLB

misses is 2 N
2

p
Pv
, which is the lower bound given by Theorem 2.1.

22

WallacJR
134

2. N

B
� Stlb

k

In this scenario, both column and row access can reuse TLB entries. Therefore, the total

number of TLB misses is

Tmiss = 2k
N2

B2
= 2

N2

Pv
:

This is equal to twice the number of TLB misses caused by all row accesses in canonical layout.

Therefore, this will be the minimum number of TLB misses for such an access pattern.

3. Stlb

k
< N

B
� Stlb

In this scenario, only row accesses can reuse TLB entries accessed in the previous row accesses.

TLB misses for row accesses are Trow = kN
2

B2 . Therefore, the total number of TLB misses is

Tmiss = k
N2

B2
+ k

N2

B
=
N2

Pv
+

N2

p
Pv

p
k:

As k decreases, TLB misses also decrease. The number of TLB misses for block data layout

is minimized when k approaches 1. Note that this scenario will reduce to scenario 2 when

k = 1. Therefore, the minimum number of TLB misses in this scenario is the same as that in

scenario 2.

Case II: k � 1. Three scenarios are discussed as follows:

1. N

B
> Stlb

k

The �rst row access causes kN
B
TLB misses. These entries cannot be reused in the next row

access. TLB misses caused by row accesses are Trow = kN
B
� N . On the other hand, the

�rst column access causes N

B
TLB misses, since all the elements in each block are stored in

one page. The TLB misses caused by column accesses is Tcol =
N

B
�N . Therefore, the total

number of TLB misses is

Tmiss = k
N2

B
+
N2

B
=

N2

p
Pv

(
1p
k
+
p
k):

To minimize the total TLB misses,

dTmiss

dk
=

N2

p
2Pv

� 1p
k
� (1� 1

k
):

Therefore, as k increases, the total number of TLB misses decreases. The total number of

TLB misses is minimized when k = 1, B =
p
Pv. Again, the minimum number is 2 N

2

p
Pv
, equal

to the lower bound given by Theorem 2.1.

2. N

B
� Stlb

In this scenario, both row and column access can reuse TLB entries. Therefore, the total

number of TLB misses is

Tmiss = 2k
N2

B2
= 2

N2

Pv
:

This is equal to twice the number of TLB misses caused by all row accesses in the canonical

layout. Therefore, it is the minimal number of TLB misses caused by all row (1st pass) and

then all column (2nd pass) accesses.

23

WallacJR
135

3. Stlb <
N

B
� Stlb

k

In this scenario, only row accesses can reuse TLB entries accessed in the previous row accesses.

TLB misses of row accesses is denoted as: Trow = kN
2

B2 . Therefore, the total number of TLB

misses is

Tmiss = k
N2

B2
+
N2

B
=
N2

Pv
+

N2

p
kPv

:

As k increases, TLB misses decrease. Like scenario 3 in Case I, the minimum number of TLB

misses in this scenario is obtained when k = 1, and this number is the same as that in the

previous scenario.

According to the above analysis, block data layout with block size
p
Pv �

p
Pv minimizes the

total number of TLB misses. As the problem size (N) increases, this minimum number asymptot-

ically approaches the lower bound given by Theorem 2.1.

�

Appendix B Cache Miss Analysis

In this section, we provide detailed cache miss analysis for a tiled access pattern with block data

layout. Individual levels of cache are not considered explicitly, as this analysis is applicable to all

cache levels. We consider a tiled program that consists of nested loops. Each loop level is denoted

by the loop index i, j, l, etc. Arrays referenced by the program are denoted as u, v, etc. Within

an iteration of a loop l, a portion of an array v (called the footprint Fp(v)) is referenced. The body

of the loop l will be executed R(v) times, where R(v) is the reuse factor.

Let (i) ICMl(v) denote the number of intrinsic cache misses [12] caused by accessing array v

during the �rst iteration of loop l; (ii) SCMl(v) denote the number of self-interference misses when

array v is accessed in one iteration of loop l; (iii) CIM(v) denote the number of cross-interference

misses between array v and other arrays for an iteration of loop l. The number of cache misses

caused by array v for one iteration of loop l is thus:

CMl(v) = ICMl(v)� SCMl(v) +R(v)� fSCMl(v) + CIM(v)g (6)

CIM(v) in the above equation can be calculated as:

CIM(v) = ICMl(v)� PrCF (v); (7)

where PrCF (v) denotes the probability of conict between one element of array v and elements of

other arrays for loop l. It is given by

PrCF (v) =
X
u6=v

Provcf (v; u);

where Provcf (v; u) is the probability that an element of array v falls into the footprint of the array

u, accessed with a stride (su) in the cache. For simplicity, it is assumed that an element of array v

does not conict with elements in two or more arrays at the same time.

24

WallacJR
136

The cache misses of array v is computed as follows:

CM(v) = NIO(l)� CMl(v); (8)

where NIO(l) denotes the total number of iterations of outer loops. The total number of misses in-

curred by accessing all arrays is the sum of misses incurred in accessing individual arrays (
P

i
CM(i)).

The above cache miss equation (Eq.(8)) is applicable to any data layout with nested loops. But

the factors (SCMl(v), Provcf (v; u), R(v), etc.) cannot be quanti�ed unless the data layout and

loop structure are known.

For block data layout, we can easily quantify SCMl(v) and Provcf (v; u) in the above equations.

The number of self-interferences can be derived by considering three ranges of block sizes. (i) When

the block size is less than the cache size, there is no self-interference. (ii) When the block size is

larger than twice the cache size, there is no reused element in cache, resulting in B
2

Lc
self-interferences

misses. (iii) When the block size is in between the above ranges,
2(B2�Sc)

Lc
self-interference misses

occur. Hence,

SCMl(v) =

8><
>:

0 for B <
p
Sc

2(B2�Sc)
Lc

for
p
Sc � B <

p
2Sc

B
2

Lc
for

p
2Sc � B

For loop l, Fp(v) elements of array v are accessed with a stride (sv). The average number of cache

lines occupied by Fp(v) elements is

NCL(v) =

(
Fp(v)sv
Lc

+ 1 if 1 < sv < Lc
Fp(v) otherwise

During a tiled computation, a block of array v is accessed in loop l. Hence, ICMl(v) is equal to the

number of cache lines, NCL(v). For loop l, array u is accessed with stride(su) whose footprint size

is Fp(u). It occupies NCL(u) cache lines in the cache. The probability of conicting with array u

is

Provcf (v; u) =
NCL(u)

Sc=Lc
:

Therefore, the cache misses of array v on block data layout is

CM(v) = NIO(l)�

8<
:NCL(v)� SCMl(v) +R(v)�

0
@SCMl(v) +NCL(v)�

X
u6=v

NCL(u)Lc

Sc

1
A
9=
; : (9)

Consider the 6-loop TMM shown in Figure 2(b). The reuse factors and footprint sizes of

arrays X , Y and Z can be determined. The values are shown in Table 6. For example, consider an

array Y in loop i. B2 elements of Y are referenced in each iteration of loop i. These B2 elements

are reused N times. NIO(l) can be obtained directly from the code (Figure 2(b)). For example,

NIO(i) = N3=B3. According to Eq.(9), the number of cache misses for Y and Z are as follows:

CM(Y) �

8>><
>>:

N
3

Lc

n
1
N
+
�
1 + Lc

B2

�
3(B+Lc)

Sc

o
for B <

p
Sc

N
3

Lc

n
2Sc
B2

�
1
N
� 1

�
+ 2� 1

N
+
�
1 + Lc

B2

�
3(B+Lc)

Sc

o
for

p
Sc � B <

p
2Sc

N
3

Lc
for

p
2Sc � B

CM(Z) � N3

Lc

�
1

B
+

�
1 +

L

B

�
(B + 2L)

Sc

�

25

WallacJR
137

Table 6: Parameters of TMM

Array Reuse Factor Footprint

i k j i k j

X(i; k) B B 1

Y(k; j) N B2 B

Z(i; j) B B B

In the 6-loop TMM, each element of array X is immediately allocated to a register. So, its proba-

bility of conicts with other arrays is 0. Thus, the number of cache misses for array X is

CM(X) =
N3

BLc
:

The total number of cache misses for the 6-loop TMM with block data layout is thus:

CM =
X
v

CM(v) = CM(X) + CM(Y) + CM(Z) (10)

�

8>>><
>>>:

N
3

Lc

n
1
B

�
2 +

(3Lc+2L2

c
)

Sc

�
+ 1

N
+ 4B+6Lc

Sc

o
for B <

p
Sc

N
3

Lc

n
4B
Sc

+ 2
B
� 2Sc

B2 + 2� 1
N
+ 6Lc

Sc

o
for

p
Sc � B <

p
2Sc

N
3

Lc

n
1 + 2

B
+
�
1 + Lc

B

��
B+2Lc
Sc

�o
for

p
2Sc � B

(11)

The above analysis focuses on the access pattern of 6-loop TMM. Because matrix multiplication

is the kernel of many linear algebra computations, the analysis can be generalized or directly applied

to other linear algebra applications.

References

[1] ADVISOR Project. http://advisor.usc.edu.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report 1342,

University of Wisconsin-Madison Computer Science Department, June 1997.

[3] J. B. Carter, W. C. Hsieh, L. B. Stoller, M. R. Swanson, L. Zhang, E. L. Brunvand, A. Davis,

C.-C. Kuo, R. Kuramkote, M. A. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building

a Smarter Memory Controller. Proceedings of the Fifth International Symposium on High

Performance Computer Architecture (HPCA-5), pages 70{79, January 1999.

[4] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear Ar-

ray Layouts for Hierarchical Memory Systems. Proceedings of the 13th ACM International

Conference on Supercomputing (ICS '99), June 1999.

[5] M. Cierniak and W. Li. Unifying Data and Control Transformations for Distributed Shared-

Memory Machines. Proceedings of the SCM SIGPLAN'95 Conference on Programming Lan-

guage Design and Implementsion, pages 205{217, June 1995.

26

WallacJR
138

[6] S. Coleman and K. S. McKinley. Tile Size Selection Using Cache Organization and Data

Layout. Proceedings of the SIGPLAN '95 Conference on Programming Language Design and

Implementation, June 1995.

[7] R. Espasa, J. Corbal, and M. Valero. Command Vector Memory Systems: High Performance

at Low Cost. Technical Report UPC-DAC-1998-8, Universitat Polit`ecnica de Catalunya, 1998.

[8] K. Esseghir. Improving data locality for caches. Master's thesis, Dept. of Computer Scienece,

Rice University, September 1993.

[9] A. Gonz�alez, C. Aliagas, and M. Valero. A Data Cache with Multiple Caching Strategies

Tuned to Di�erent Types of Locality. Proc. International Conference on Supercomputing,

pages 338{347, July 1995.

[10] T. L. Johnson, M. C. Merten, and W. W. Hwu. Run-time Spatial Locality Detection and Op-

timization. Proceedings of the 30th International Symposium on Microarchitecture, December

1997.

[11] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Improving Locality Using Loop

and Data Transformations in an Integrated Framework. Proceedings of the 31st IEEE/ACM

International Symposium on Microarchitecture, November 1998.

[12] M. Lam, E. Rothberg, and M. E. Wolf. The Cache Performance and Optimizations of Blocked

Algorithms. Proceedings of the Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-IV), April 1991.

[13] N. Mitchell, K. H�ogstedt, L. Carter, and J. Ferrante. Quantifying the Multi-Level Nature of

Tiling Interactions. International Journal of Parallel Programming, 1998.

[14] D. Padua. The Fortran I Compiler. IEEE Computing in Science & Engineering, Jan-

uary/Febrary 2000.

[15] D. A. Padua. Outline of a Roadmap for Compiler Technology. IEEE Computing in Science

& Engineering, Fall 1996.

[16] P. R. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Augmenting Loop Tiling with Data

Alignment for Improved Cache Performance. IEEE Transactions on Computers, 48(2), Febu-

rary 1999.

[17] N. Park, D. Kang, K. Bondalapati, and V. K. Prasanna. Dynamic Data Layouts for Cache-

conscious Factorization of DFT. Proceedings of International Parallel and Distributed Process-

ing Symposium 2000 (IPDPS 2000), April 2000.

[18] N. Park and V. K. Prasanna. Cache Conscious Walsh-Hadamard Transform. International

Conference on Acoustics, Speech, and Signal Processing 2001 (ICASSP 2001), May 2001.

[19] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,

and K. Yelick. A Case for Intelligent DRAM: IRAM. IEEE Micro, April 1997.

27

WallacJR
139

[20] G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Conict Misses. ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI'98), June

1998.

[21] G. Rivera and C.-W. Tseng. Locality Optimizations for Multi-Level Caches. Proceedings of

IEEE Supercomputing'99(SC'99), November 1999.

[22] V. Sarkar and G. R. Gao. Optimization of Array Accesses by Collective Loop Transformations.

the Proceedings of the 1991 International Conference of Supercomputing, June 1991.

[23] A. Saulsbury, F. Dahgren, and P. Stenstr�om. Receny-based TLB Preloading. The 27th Annual

International Symposium on Computer Architecture(ISCA), June 2000.

[24] H. Sharangpani. Intel Itanium Processor Microarchitecture Overview. Microprocessor Forum,

October 1999.

[25] O. Temam, E. D. Granston, and W. Jalby. To Copy or Not to Copy: A Comile-Time Technique

for Assessing When Data Copying Should be Used to Eliminate Cache Conicts. Proceedings

of IEEE Supercomputing'93(SC'93), November 1993.

[26] R. C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software (ATLAS).

Proceedings of SC'98, November 1998.

[27] Q. Yi, V. Adve, and K. Kennedy. Transforming Loops to Recursion for Multi-Level Mem-

ory Hierarchies. ACM SIGPLAN 2000 Conference on Programming Language Design and

Implementation (PLDI 2000), June 2000.

28

WallacJR
140

ADVISOR
Algorithms for Data Intensive Applications on

Intelligent and Smart Memories

Results Submission
June 14, 2002

During the course of this project we have focused on techniques for improving cache
performance on traditional, cache-based processors. The majority of our work was done for the
transitive closure stressmark, although we have also shown that these techniques can be used on
a large class of algorithms. Results along this line are shown in the referenced conference
papers.

Significant contributions include the Unidirectional Space Time Representation (USTR) and
a novel recursive implementation of the Floyd-Warshall algorithm. Using the USTR it is
possible to quickly generate cache-friendly implementations of a large class of algorithms.
While recursion has been used to generate cache-friendly implementations of other algorithms,
due to the non-trivial data dependences in the Floyd-Warshall algorithm, no recursive
implementation of this algorithm has been shown at this time.

Also as part of this project we designed and implemented a simulator for Processing in
Memory architectures. Processing-In-Memory (PIM) systems propose to solve the processor-
memory gap by achieving tremendous processor-memory bandwidth by combining processors
and memory together on the same chip substrate. Notre Dame, USC ISI, Berkeley, IBM, and
others are developing PIM systems and have presented papers demonstrating the performance
and optimization of several benchmarks on their architectures. While excellent for design
verification, the proprietary nature and the time required to run their simulators are the biggest
detractors of their tools for application optimization. A cycle-accurate, architecture specific
simulator, requiring several hours to run, is not suitable for iterative development or experiments
on novel ideas. We provide a simulator that will allow faster development cycles and a better
understanding of how an application will port to other PIM architectures. A brief description of
the simulator and some sample results are shown in Section 7.

1. Architecture Description

We use four different architectures for our experiments. The Pentium III Xeon running

Windows 2000 is a 700 MHz, 4 processor shared memory machine with 4 GB of main memory.
Each processor has 32 KB of level-1 data cache and 1 MB of level-2 cache on-chip. The level-1
cache is 4-way set associative with 32 B lines and the level-2 cache is 8-way set associative with
32 B lines.

The UltraSPARC III machine is a 750 MHz SUN Blade 1000 shared memory machine
running Solaris 8. It has 2 processors and 1 GB of main memory. Each processor has 64 KB of
level-1 data cache and 8 MB of level-2 cache. The level-1 cache is 4-way set associative with 32
B lines and the level-2 cache is direct mapped with 64 B lines.

The MIPS machine is a 300 MHz R12000, 64 processor, shared memory machine with 16
GB of main memory. Each processor has 32 KB of level-1 data cache and 8 MB of level-2

WallacJR
141

cache. The level-1 cache is 2-way set associative with 32 B lines and the level-2 cache is direct
mapped with 64 B lines.

The Alpha 21264 is a 500 MHz uniprocessor machine with 512 MB of main memory. It has
64 KB of level-1 data cache and 4 MB of level-2 cache. The level-1 cache is 2-way set
associative with 64 B lines and the level-2 cache is direct mapped with 64 B lines. It also has an
8 element fully-associative victim cache. All experiments are run on a uniprocessor or on a
single node of a multiprocessor system.

2. Optimized Implementations

In this section, we give a description of the optimizations performed for each

implementation. Also included is a description of the baseline implementations. Pseudo code is
included where it benefited the description of the implementations. More details regarding the
implementations can be found in [3] and [4].

2.1. Normal Floyd-Warshall – Baseline

A straightforward implementation of the Floyd-Warshall algorithm similar to the code given
in the Stressmark specification was compiled using all optimizations available in the GNU C++
(gcc) compiler and the Microsoft Visual C++ compiler. The execution time of the kernel was
collected and used as the baseline for the optimized implementations of the Floyd-Warshall
algorithm. This same compilation and execution time collection was used for all
implementations.

2.2. Floyd-Warshall with Tiling and Copying – Baseline

Tiling with copying is a standard cache-friendly optimization that can be performed using
current research compilers. Because of this, we applied tiling with copying to the Floyd-
Warshall algorithm. Due to data dependences current research compilers can only tile the inner
two loops. This tiling was performed and the results also considered a baseline optimization.

2.3. Floyd-Warshall with Tiling and the Block Data Layout

In order to avoid the overhead of copying, the Block Data Layout (BDL) was used for the
adjacency matrix. The BDL is a known layout that places a tile of data in contiguous locations
instead of a row. As in the tiling with copying optimization, only the inner two loops were tiled
due to data dependences. Since this is also a known technique, it was also considered a baseline
optimization.

2.4. Simple USTR Floyd-Warshall

In [3], we developed the Unidirectional Space Time Representation (USTR) and showed that
it can be used to generate cache friendly implementations of a large class of algorithms. As it is
very similar to a systolic array representation, as a first approach we used a systolic array
implementation of the Floyd-Warshall algorithm. Pseudo code for the simple USTR
implementation is given in Figure 1. In [3], we compared the results of this optimization with
the results from the previously mentioned baselines.

WallacJR
142

2.5. Optimized USTR Floyd-Warshall

In [4], we discuss a tiled implementation of the Floyd-Warshall algorithm, which can also be
shown to fit in the USTR. This we refer to it here as an optimized USTR implementation. In
order to eliminate the three passes present in the simple USTR implementation, we reorder the
computation of tiles in the following fashion (see Figure 2). We first compute the (k,k)th tile (the
darkest tiles shown in Figure 2), the the kth row and column of tiles (the grey tiles), and finally
the remainder of the matrix (the white tiles).

2.6. Recursive Floyd-Warshall

In [4], we also discuss a novel recursive
implementation of the Floyd-Warshall algorithm. The
recursive implementation represents a cache oblivious
implementation of the Floyd-Warshall algorithm and
achieves improved cache performance at each level of
the memory hierarchy. Pseudo code is given in Figure
3. See [4] for more details regarding the recursive
implementation include a proof of correctness and of
optimality with respect to processor-memory traffic.

2.7. Basic Dijkstra’s – Baseline

We also examined optimizing Dijkstra’s algorithm
for the all pairs shortest path problem. For the baseline
we again used the best compiler optimizations available
to optimize a straightforward code. We use a binary
heap to implement the priority queue and store the
graph as an adjacency list.

Cache-Friendly_FW(A, C, N, b)

1. for l <- 1 to 3
2. for bi <- 1 to N/b
3. for bj <- 1 to N/b
4. load BxB elements of C at (bi,bj)
5. for bk <- 1 to N/b
6. load BxB elements of A at (bi,bk)
7. load BxB elements of A at (bk,bj)
8. for i <- bi to bi + (b-1)
9. for j <- bj to bj + (b-1)
10. for k <- bk to bk + (b-1)
11. C(i,j) <- min(C(i,j), A(i,k) + A(k,j))
12. return C

Figure 1: Pseudo code for the cache-friendly implementation
of the Floyd-Warshall algorithm. A is the input
matrices, C is the output matrix, N is the dimension
of all matrices, and b is the tile size.

Floyd-Warshall-Recursive(A, B, C)

1. if (not base case) {
2. A11 ← FWR(A11, B11, C11);
3. A12 ← FWR(A12, B11, C12);
4. A21 ← FWR(A21, B21, C11);
5. A22 ← FWR(A22, B21, C12);
6. A22 ← FWR(A22, B22, C22);
7. A21 ← FWR(A21, B22, C21);
8. A12 ← FWR(A12, B12, C22);
9. A11 ← FWR(A11, B12, C21);
10. }
11. else {
12. /* run base case */
13. }
14. return A

Figure 3: Pseudo code for the
recursive version of the
Floyd-Warshall algorithm

Figure 2: Tiled
implementation of FW

WallacJR
143

WallacJR

2.8. Cache-Friendly Dijkstra’s

In order to match the data access pattern of Dijkstra’s algorithm to the data layout, we
replaced the adjacency list with the adjacency matrix and replaced the binary heap with an array
and used a linear search to find the minimum value. In this way we are able to take advantage of
data reuse at the cache line level and simplify prefetching.

3. Implementation Documentation

It is a well-known fact that the speed of modern processors is increasing at a rate of roughly

60% per year while the speed of memory is increasing at a rate of roughly 7% per year. This
difference is often referred to as the processor-memory gap, and it causes the latency to memory
as seen by the processor to increase significantly with each passing year. In order to hide this
increasing latency, caches have been designed to take advantage of locality of reference; the fact
that once an element is accessed there is a good chance that it and/or elements near will be
accessed in the near future. The cache is much smaller than main memory and is placed much
closer to the processor in terms of latency. Modern processors are including more levels of
cache, each level larger in size and farther from the processor in terms of latency.

Invariably the processor will access data that is not in the cache and this will result in a cache
miss. Cache misses can be categorized into one of three categories: cold misses, capacity misses,
and conflict misses. A cold miss occurs the first time a data element is accessed. These misses
are unavoidable. A capacity miss occurs if the working set of the application is larger than the
cache. These misses can be avoided by either decreasing the working set or increasing the size
of the cache. A conflict miss occurs if two or more data elements in the working set map to
same place in the cache and the replacement of one results in a subsequent cache miss when that
element is accessed. This type of miss can be avoided in a number of ways including improved
data access patterns, improved data layout, reducing the working set, etc [5].

Two other issues that should be addressed are cache pollution and TLB misses. TLB misses
are similar to cache misses except that they refer to misses in the Translation Look-aside Buffer.
They can be categorized the same as cache misses and reducing them follows a similar pattern.
Cache pollution is a somewhat different issue. This refers to when a cache line is brought into
the cache and only a small portion of it is used before it is pushed out of the cache. A large
amount of cache pollution will increase the bandwidth requirement of the application, even
though the application is not utilizing more data.

Based on this discussion, the keys to improve the performance of the memory system are as
follows: increase data reuse, decrease cache conflicts, and decrease cache pollution. The
techniques that we use to achieve these ends can be categorized as data layout optimizations and
data access pattern optimizations. In our data layout optimizations we attempt to match the data
layout to an existing data access pattern. For example, we use the Block Data Layout to match
the access pattern of a tiled algorithm. In our data access pattern optimizations, we design both
novel and trivial optimizations to the algorithm to improve the data access pattern. For example,
we implemented both a tiled implementation and a novel recursive implementation of the Floyd-
Warshall algorithm to improve the data access pattern. The techniques that we use are
algorithmic in nature, meaning that we assume no control of the hardware or the operating
system.

WallacJR
144

WallacJR

While these techniques are common in the area of
dense linear algebra problems, transitive closure presents
a very different set of challenges from those present in
dense linear algebra problems such as matrix multiply
and FFT. In the Floyd-Warshall algorithm, the
operations involved are comparison and add operations.
There are no floating-point operations as in matrix
multiply and FFT. We are also faced with data
dependences that require us to update the entire NxN
array Dk before moving on to the (k+1)th step (see Figure
4). This data dependence from one kth loop to the next
eliminates the ability of any commercial or research
compiler to improve data reuse. We have explored using
the SUIF research compiler and found that it cannot
perform the optimizations discussed in Section 3 without user provided knowledge of the
algorithm. These challenges mean that although the computational complexity of the Floyd-
Warshall algorithm is O(N3), equivalent to matrix multiply, often transitive closure displays
much longer running times.

In Dijkstra’s algorithm and Prim’s algorithm, the largest data structure is the graph
representation. An optimal representation, with respect to space, would be the adjacency-list
representation. However, this involves pointer chasing when traversing the list. The priority
queue has been highly optimized by various groups over the years. Unfortunately, the update
operation is often excluded, as it is not necessary in such algorithms as sorting. The
asymptotically optimal implementation that considers the update operation is the Fibonacci heap.
Unfortunately this implementation includes large constant factors and did not perform well in
our experiments.

Access to source code is obviously required for our optimizations. Changes to the source
code are fairly minor and are most often isolated to the inner loop or to the loop structure of the
transitive closure kernel. In some cases, such as when using the Block Data Layout or in the
optimization to Dijkstra’s algorithm, it may be necessary to change the data structure or data
layout for the kernel. We achieved this by allocating additional space and copying the data into
the correct format. Upon completion the result was copied back to the original format. Since
transitive closure is an O(N3) complexity algorithm, copying O(N2) data required a very small
amount of time relative to the total running time. For any optimization that requires copying, the
running time given includes the time for copying. Possibly the most difficult task is choosing the
appropriate block size for the tiled implementations. This was done experimentally on one
problem size on each machine and the block size found was used for all problem size. ATLAS
provides a technique for automatically performing this experimentation at compile time, and a
similar approach could be developed for these implementations.

4. Output Data

Output data for the transitive closure stressmark has been included in the attached zip files.
File descriptions are as follows. Because of the number of implementations and input files, we
do not provide results for every input file on every machine. Output is given for input files 01,
04, 09, and 18 on the Pentium III platform.

kth row

kth column

(i,j)th element

Dk+1
(i,j) = min{Dk

(i,j), Dk
(i,k)+Dk

(k,j)}

Figure 4: kth iteration of outer loop
in Floyd-Warshall
Algorithm

WallacJR
145

• djk_cf_tc[01|04|09|18].stm.out Cache-friendly implementation of Dijkstra’s algorithm.
• sa_bdl_tc[01|04|09|18].stm.out Simple USTR implementation of the Floyd-Warshall

algorithm.
• fw_ustr_tc[01|04|09|18].stm.out Optimized USTR implementation of the Floyd-Warshall

algorithm.
• Fw_rc_tc[01|04|09|18].stm.out Recursive implementation of the Floyd-Warshall

algorithm.

5. Measurement Data

Each implementation was compiled using the most optimizations available in gcc and timing

data was collected using the system time function. With the exception of the Pentium III, the
resolution was in microseconds. The Pentium III had a resolution in milliseconds. The results
for the recursive implementation of the Floyd-Warshall algorithm on the MIPS machine were not
gathered due to increased load on the machine. The machine is administered by the University
and shared by a large number of users. This is also the cause of unexpected variations in the
results. Implementations are referred to by their Subsection number in Section 2.

WallacJR
146

WallacJR

5.
1.

A

lp
ha

 2
12

64

Im
pl

em
en

ta
tio

n
F

ile

1
2

3
4

5
6

7
8

1
0.

00
01

85

0.
00

02
01

0.

00
01

45

0.
00

03
15

0.

00
00

00

0.
00

01
01

0.

00
03

22

0.
00

01
64

2

0.
01

17
68

0.

01
27

57

0.
01

09
50

0.

01
49

18

0.
00

00
00

0.

00
41

83

0.
00

84
42

0.

00
71

63

3
0.

01
19

67

0.
01

27
69

0.

01
11

22

0.
01

54
88

0.

00
00

00

0.
00

44
15

0.

01
14

36

0.
00

70
16

4

1.
02

79
86

1.

06
24

57

0.
85

90
55

1.

05
90

78

0.
00

00
00

0.

24
51

75

0.
65

33
93

0.

59
31

85

5
1.

04
97

17

1.
06

98
45

0.

79
67

28

1.
06

66
01

0.

00
00

00

0.
22

70
65

1.

89
63

72

0.
43

70
60

6

10
.5

72
18

6
9.

70
42

72

7.
19

70
20

8.

60
39

34

1.
00

00
00

1.

78
36

32

5.
47

49
89

5.

22
24

31

7
10

.6
51

29
3

9.
74

70
59

6.

94
28

61

8.
73

00
16

2.

00
00

00

1.
77

03
51

11

.6
15

94
6

4.
96

04
82

8

10
.5

20
43

2
9.

83
57

10

7.
11

49
15

8.

55
83

87

2.
00

00
00

1.

74
25

47

18
.3

51
51

2
4.

91
66

40

9
11

1.
06

23
71

89

.0
04

14
8

83
.1

67
46

0
68

.4
44

19
2

14
.0

00
00

0
13

.7
52

60
1

42
.8

86
00

4
53

.4
61

45
3

10

11
0.

96
45

34

89
.0

63
50

4
79

.1
73

44
8

68
.3

35
74

2
14

.0
00

00
0

13
.6

65
58

4
87

.1
45

53
0

49
.6

01
46

5
11

11

0.
68

77
74

88

.8
02

67
7

77
.8

89
79

0
69

.1
52

69
7

14
.0

00
00

0
13

.6
57

33
6

13
2.

35
89

38

47
.7

93
52

7
12

11

0.
81

79
42

88

.6
40

41
5

73
.6

05
03

7
68

.2
59

79
3

14
.0

00
00

0
13

.5
18

73
8

17
6.

95
80

09

47
.2

93
45

6
13

11

23
.2

34
99

3
76

6.
87

54
68

10

63
.7

18
74

4
54

7.
74

20
92

11

1.
00

00
00

10

8.
94

73
79

18

7.
46

38
84

43

7.
33

26
50

14

11

25
.7

17
70

6
76

7.
15

98
47

10

69
.0

55
19

4
55

1.
19

65
95

11

1.
00

00
00

10

8.
56

56
73

48

6.
91

69
35

44

4.
37

96
22

15

11

27
.8

18
75

3
76

7.
62

98
22

10

49
.8

24
16

3
54

3.
38

90
57

11

0.
00

00
00

10

7.
57

27
06

95

6.
34

84
57

40

7.
15

14
37

16

11

27
.0

79
27

6
76

7.
27

71
13

10

70
.5

60
79

9
54

2.
96

04
82

11

0.
00

00
00

10

7.
51

89
04

13

79
.4

43
08

6
50

4.
13

40
06

17

11

27
.6

35
37

1
76

5.
46

26
13

52

0.
46

80
88

54

2.
89

97
48

11

1.
00

00
00

10

7.
66

89
52

15

93
.2

01
41

6
41

1.
42

26
90

18

11

27
6.

81
37

86

60
96

.0
83

39
0

35
93

.2
52

58
7

38
37

.6
05

36
6

86
0.

00
00

00

86
3.

74
60

77

13
36

.9
12

38
7

35
83

.0
08

06
3

19

11
30

2.
37

11
07

60

95
.3

92
17

8
35

79
.6

97
69

3
38

36
.6

71
14

8
84

7.
00

00
00

85

6.
73

55
78

65

22
.2

94
08

7
33

00
.5

13
99

3
20

60

84
.6

85
96

1
36

21
.7

32
12

8
38

38
.7

52
39

2
84

7.
00

00
00

85

6.
93

08
77

11

45
5.

72
89

34

33
70

.8
39

84
9

WallacJR
147

5.
2.

M

IP
S

R
12

00
0

Im
pl

em
en

ta
tio

n
F

ile

1
2

3
4

5
7

8
1

0.
00

02
18

0.

00
02

17

0.
00

01
83

0.

00
03

80
0.

00
01

60
0.

00
02

32

0.
00

05
55

2

0.
01

34
84

0.

01
45

19

0.
01

01
84

0.

01
67

96
0.

00
56

16
0.

01
18

44

0.
01

27
83

3

0.
01

37
60

0.

01
45

23

0.
01

03
24

0.

01
66

82
0.

00
56

11
0.

01
17

60

0.
01

66
24

4

0.
90

84
26

0.

87
84

97

0.
62

13
36

1.

04
42

98
0.

27
79

99
0.

80
64

86

0.
40

29
20

5

0.
91

19
63

0.

87
44

26

0.
62

08
57

1.

04
08

32
0.

27
35

38
0.

80
45

82

0.
82

82
91

6

9.
52

25
14

7.

14
43

50

5.
23

11
79

8.

28
69

38
2.

16
97

03
6.

35
77

56

2.
59

79
15

7

9.
34

26
75

7.

18
15

82

5.
23

06
01

8.

28
04

45
2.

15
67

68
6.

39
53

44

4.
85

91
17

8

9.
43

32
19

7.

20
13

12

5.
18

60
62

8.

27
62

54
2.

15
25

14
6.

34
91

65

8.
14

19
79

9

15
0.

43
12

72

10
2.

66
17

80

79
.9

92
08

5
66

.5
04

64
1

17
.4

20
77

0
60

.7
40

22
5

20
.6

75
46

1
10

14

9.
70

29
79

10

2.
38

01
30

79

.5
58

68
6

66
.4

80
36

4
19

.3
38

53
3

60
.7

50
07

7
56

.9
52

47
6

11

14
9.

52
46

52

10
1.

68
04

88

78
.5

87
11

2
67

.4
81

93
7

17
.3

15
93

8
60

.1
06

15
4

97
.5

59
50

6
12

15

1.
68

62
42

10

1.
66

06
66

79

.3
18

65
3

67
.2

32
73

6
17

.2
65

52
8

60
.1

89
53

9
13

3.
19

73
57

13

18

23
.3

36
45

5
88

7.
36

10
28

69

2.
36

26
10

53

5.
53

78
56

14
0.

14
74

77
62

9.
26

41
93

12

1.
56

43
39

14

15

56
.4

17
03

3
88

8.
67

29
46

78

0.
79

84
38

74

8.
95

04
68

13
9.

75
55

13
91

2.
30

15
14

54

2.
94

61
10

15

15

54
.0

67
99

8
90

3.
71

21
67

68

9.
04

71
81

53

4.
92

45
43

13
9.

00
13

72
62

0.
63

31
98

10

03
.9

66
32

0
16

15

46
.1

45
06

6
87

8.
05

17
44

74

7.
96

97
35

53

5.
26

11
79

13
8.

88
42

26
62

2.
94

29
90

10

45
.5

68
35

8
17

15

49
.4

03
27

4
88

9.
70

16
72

70

8.
30

96
46

53

5.
05

79
97

13
8.

80
65

54
62

5.
62

30
22

17

30
.9

17
88

4
18

12

20
0.

40
27

54

77
86

.8
93

69
8

61
16

.5
31

01
7

43
28

.9
69

19
0

11
10

.4
90

15
6

54
70

.4
53

34
7

12
23

.8
48

73
4

19

11
73

5.
30

88
92

83

01
.0

65
04

0
57

03
.0

89
87

0
42

94
.3

70
43

9
11

07
.6

74
33

5
51

61
.8

26
02

9
66

55
.4

59
28

2
20

10

98
4.

92
00

08

77
67

.7
11

33
5

57
32

.9
48

92
5

45
20

.8
28

23
3

11
06

.4
38

83
6

51
32

.6
71

64
0

12
54

0.
49

39
05

WallacJR
148

5.
3.

P

en
ti

um
 I

II

Im
pl

em
en

ta
tio

n
F

ile

1
2

3
4

5
6

7
8

1
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0
0.

00
0

0.
00

0
2

0.
01

6
0.

01
5

0.
00

0
0.

01
6

0.
00

0
0.

01
5

0.
01

6
0.

01
5

3
0.

01
5

0.
01

6
0.

00
0

0.
01

6
0.

00
0

0
0.

01
5

0.
03

1
4

0.
64

0
0.

84
4

0.
51

6
0.

75
0

0.
21

9
0.

23
4

0.
31

3
1.

20
3

5
0.

62
5

0.
08

4
0.

51
6

0.
75

0
0.

21
9

0.
23

4
1.

32
8

1.
18

8
6

12
.0

31

11
.2

81

10
.6

72

6.
07

8
1.

64
0

1.
76

6
5.

89
0

12
.7

03

7
12

.0
47

11

.3
28

10

.6
72

6.

06
2

1.
65

6
1.

76
6

10
.4

53

12
.7

03

8
12

.0
62

11

.2
82

10

.6
56

6.

06
2

1.
64

1
1.

76
5

13
.7

65

12
.8

43

9
91

.9
69

91

.9
06

87

.8
90

48

.6
87

12
.8

44
13

.9
37

39
.2

97

10
3.

37
5

10

91
.9

85

91
.9

53

87
.8

43

48
.6

56
12

.8
12

13
.8

75
68

.9
68

10

3.
12

5
11

91

.9
53

91

.8
44

87

.7
65

48

.6
41

12
.7

34
13

.8
59

93
.0

00

10
3.

26
5

12

91
.9

69

91
.8

12

87
.8

43

48
.5

94
12

.7
35

13
.7

97
11

2.
68

7
10

2.
09

4
13

69

7.
17

2
74

4.
95

6
70

0.
53

7
38

7.
32

8
10

1.
26

5
11

0.
43

7
16

6.
15

6
84

0.
81

2
14

69

7.
20

3
74

4.
86

2
69

7.
01

5
38

7.
45

3
10

0.
81

3
10

9.
96

8
36

6.
54

7
83

7.
43

7
15

69

7.
54

7
74

3.
02

3
69

4.
56

2
38

6.
86

0
10

0.
32

8
10

9.
56

2
63

9.
37

5
81

3.
76

6
16

69

7.
06

2
74

4.
88

6
69

3.
98

3
38

6.
82

9
99

.5
94

10
9.

48
5

85
1.

90
6

79
8.

71
8

17

69
7.

53
2

74
3.

15
8

69
3.

76
9

38
6.

84
4

99
.7

82
10

9.
45

3
95

6.
28

1
79

4.
12

5
18

59

18
.4

37

62
11

.0
69

56

54
.2

39

30
93

.5
94

79
8.

39
1

87
6.

36
12

79
.0

47

67
03

.4
06

19

59

20
.7

19

62
08

.7
82

55

96
.3

97

30
91

.5
00

79
1.

21
9

87
3.

51
6

50
73

.4
38

63

06
.1

40

20

59
19

.0
16

62

08
.7

63

55
84

.9
81

30

90
.6

09
78

9.
87

5
87

3.
46

8
14

75
08

4.
83

1
62

90
.8

75

WallacJR
149

5.
4.

U

lt
ra

SP
A

R
C

 I
II

Im
pl

em
en

ta
tio

n
F

ile

1
2

3
4

5
6

7
8

1
0.

00
01

92

0.
00

01
79

0.

00
02

01

0.
00

03
48

0.
00

04
63

0.
00

01
54

0.
00

03
07

0.

00
02

03

2
0.

01
17

02

0.
01

10
03

0.

01
04

66

0.
01

74
52

0.
00

63
82

0.
00

82
68

0.
00

75
82

0.

01
09

80

3
0.

01
21

28

0.
01

09
80

0.

01
06

34

0.
01

74
23

0.
00

63
92

0.
00

83
48

0.
00

93
23

0.

01
08

83

4
0.

83
57

39

0.
78

68
40

0.

70
72

03

1.
12

05
34

0.
03

74
67

0.
51

11
59

0.
31

64
60

0.

76
80

61

5
0.

84
14

43

0.
77

56
54

0.

71
01

30

1.
11

83
88

0.
37

00
88

0.
51

33
03

0.
72

82
50

0.

73
82

54

6
6.

72
24

00

6.
47

58
20

5.

79
77

05

8.
94

11
43

2.
93

74
82

4.
08

13
08

2.
19

75
58

5.

96
68

27

7
6.

77
12

69

6.
34

92
10

5.

80
90

56

8.
94

54
39

2.
94

93
31

4.
08

12
56

4.
07

44
24

5.

98
28

69

8
6.

79
63

40

6.
40

18
54

5.

82
27

20

8.
94

46
73

2.
93

40
83

4.
07

46
47

5.
85

22
41

5.

77
79

95

9
80

.8
85

44
2

89
.6

61
14

7
10

0.
16

31
18

71

.6
76

68
4

24
.6

74
01

0
32

.9
63

66
8

14
.7

73
81

9
49

.6
30

43
6

10

80
.9

54
86

3
88

.0
04

82
5

10
0.

45
13

73

71
.5

86
11

7
23

.7
78

43
6

32
.9

19
88

3
47

.9
68

16
2

48
.5

62
77

9
11

80

.8
67

38
5

85
.8

12
84

7
96

.5
86

65
4

71
.9

16
54

3
23

.3
48

80
6

32
.9

08
94

5
87

.0
02

77
3

47
.4

90
66

4
12

81

.2
93

15
7

90
.6

96
09

7
96

.5
69

38
8

71
.5

65
41

9
24

.2
10

30
0

32
.8

77
86

3
12

1.
61

23
87

47

.2
24

04
6

13

68
1.

13
59

80

70
3.

44
70

22

95
1.

30
01

83

58
0.

16
17

12
19

0.
25

43
15

26
7.

44
61

67
10

6.
31

02
65

55

4.
81

68
05

14

68

2.
16

65
57

69

3.
10

66
53

95

0.
45

92
49

57

8.
22

22
40

18
7.

40
70

90
26

7.
14

26
01

32
2.

34
19

17

55
8.

88
49

75

15

68
2.

82
98

39

71
3.

97
83

35

95
1.

88
71

43

57
8.

12
83

83
18

7.
32

88
94

26
7.

08
14

90
67

6.
05

63
15

54

9.
53

93
85

16

68

3.
97

15
39

71

5.
81

05
34

95

1.
51

23
62

57

8.
16

24
08

18
8.

76
10

34
26

7.
12

10
21

97
4.

91
10

65

54
3.

98
55

81

17

68
2.

90
53

65

74
1.

25
13

47

95
1.

49
51

05

57
8.

14
54

44
18

8.
44

23
08

26
7.

05
77

74
12

01
.9

73
56

0
55

7.
39

96
35

18

60

79
.1

13
58

9
52

12
.6

73
19

4
10

58
1.

32
64

57

46
46

.7
20

72
5

15
07

.8
45

60
1

21
47

.3
95

04
6

10
50

.5
22

20
1

46
72

.7
15

00
4

19

60
76

.9
87

45
6

52
09

.9
72

18
2

10
66

2.
21

70
45

43

5.
58

97
88

15
09

.1
67

50
6

21
48

.5
34

08
7

51
26

.6
31

08
5

45
26

.1
04

11
1

20

60
76

.9
65

43
5

52
85

.1
63

31
4

10
52

3.
90

62
77

46

35
.2

73
61

7
15

12
.8

16
77

5
21

50
.3

30
14

6
10

65
6.

28
12

26

45
42

.6
24

55
1

WallacJR
150

6. Comments

Based on our results, it seems clear that performance on current microprocessors can be

significantly improved by using simple algorithmic changes. Moreover, these changes require
no control over the operating system or the hardware.

In our experiments, we did not address the topic of disk access and therefore assume that the
problem size fits into the main memory. This limited our experiments to the problem size of
4096. Based on the results and the analytical analysis presented in [3] and [4], the techniques are
scalable to larger systems and larger problem sizes. In these papers, we also show that the
processor-memory traffic is reduced by a factor proportional to the cache size. For this reason,
more speedup can be attained if a larger cache is available.

Tiling and recursion are also used as computation decomposition techniques for
parallelization. Good parallelized code should have minimal communication and sharing
between computational nodes, thus our pursuit of data locality also benefits parallelization. Our
sequential FW implementations and matching implementation can easily be transformed into
parallel code. Computation and data are already decomposed, what need to be added are
computation and data distribution, synchronization and communication primitives. One of our
future directions will be to implement parallel versions of the Floyd-Warshall algorithm and
matching algorithm based on the work presented in this paper.

7. PIM Simulator

The PIM simulator is a wrapper around a set of models. It is written in Perl, because the
language’s powerful run-time interpreter allows us to easily define complex models. The
simulator is modular; external libraries, visualization routines, or other simulators can be added
as needed. The simulator is composed of various interacting components. The most important
component is the data flow model, which keeps track of the application data as it flows through
the host and the PIM nodes. We assume a host with a separate, large memory. Note that the
PIM nodes make up the main memory of the host system in some PIM implementations. The
host can send and receive data in a unicast or multicast fashion, either over a bus or a non-
contending, high-bandwidth, switched network. The bus is modeled as a single datapath with
parameterized bus width, startup time and per element transmission time. Transmissions over
the network are assumed to be scheduled by the application to handle potential collisions. The
switched network is also modeled with the same parameters but with collisions defined as
whenever any given node attempts to
communicate with more than one other
node (or host), except where multicast is
allowed. Again, the application is
responsible for managing the scheduling
of data transmission. Communication
can be modeled as a stream or as
packets.

Computation time can be modeled at
an algorithmic level, e.g. n lg(n) based
on application parameters, or in terms of
basic arithmetic operations. The

Figure 5: Speedup from 1 processor to n
processors with DIVA model.

WallacJR
151

accuracy of the computation time is
dependent entirely on the application
model used. We assume that the
simulator will be commonly used to
model kernel operations such as
benchmarks and stressmarks, where
the computation is well understood,
and can be distilled into a few
expressions. This assumption allows
us to avoid the more complex issues
of the PIM processor design and
focus more on the interactions of the
system as a whole.

Figure 5 shows the overall speedup of the biConjugate Gradient stressmark with respect to
the number of active PIM elements. It compares results produced by our tool using a DIVA
parameterized architecture to the cycle-accurate simulation results in [2]. Time is normalized to
a simulator standard.

Figure 6 is a sample output graph from [1] for a BiCG application with parameters similar to
that of the DIVA architecture with a parallel, non-contending network model, application
parameters of n(row/column size of the matrix)=14000 and nz(non zero elements)=14
elements/row. Figure 6 shows the PIM-to-PIM transfer cost, Host-to-PIM transfer costs,
computation time, and total execution time(total) as the number of PIM nodes increases under a
DIVA model. The complete simulation required 0.21 seconds of user time on a Sun Ultra250
with 1024 MB of memory. For more results and discussion see [1].

8. References

[1] Z. Baker and V. K. Prasanna. Performance Modeling and Interpretive Simulation of PIM
Architectures and Applications. In Proc. of Euro-Par, Paderborn, Germany, August 2002.

[2] M. W. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Brockman, W.
Athas, A. Srivastava, V. Freeh, J. Shin, and J. Park. Mapping Irregular Applications to DIVA, a
PIM-based Data-Intensive Architecture. In Proc. of International Conference on
Supercomputing, November, 1999.

[3] M. Penner and V. K. Prasanna. Cache-Friendly Implementations of Transitive Closure. In
Proc. of International Conference on Parallel Architectures and Compiler Techniques,
Barcelona, Spain, September 2001.

[4] J. S. Park, M. Penner, and V. K. Prasanna. Optimizing Graph Algorithms for Improved
Cache Performance. In Proc. of International Parallel and Distributed Processing Symposium,
Fort Lauderdale, Florida, April 2002.

[5] D. A. Patterson and J. L. Hennessy. Computer Architecture A Quantitative Approach. 2nd
Ed., Morgan Kaufmann Publishers, Inc., San Francisco, California, 1996.

Figure 6: BiConjugate Gradient Results.

WallacJR
152

h
Source Code Contents (Code and Makefiles are contained on included compact disc)

Cache Optimization Codes

Cholesky Method0

Contains various implementations for the Cholesky
method: blocking, tiling, tiling with padding, Morton data layouts,
and Morton data layouts with recursion.

To build code,

Output: timing data

Minimum Spanning Tree0

Dijkstra's and Prim's Algorithm: Cache Friendly Implementations

Input files are from the DIS Stressmark suite.

Compiler options:

Win32 withCXX = gcc Version> 2.95, all platforms; tested on Solaris, Linux,

Cygwin
CXXFLAGS = -Wall
CXXOPT = -03

To build code,

Output: timing data

Floyd- W arshaU Algorithm0

Recursive implementation of the Floyd-Warshall algorithm
Tiled implementation of the Floyd-Warshall algorithm

Input files are generated by ../gen_input which creates NxN matrix

Compiler operations:

CXX = gcc Version> 2.95, all platforms; tested on Solaris, Linux, Win32 with

Cygwin
CXXFLAGS = -Wall
CXXOPT = -03

To build code, 'make'

Output: timing data

1

WallacJR
153

LV Decomposition0

-.
Tiling, copying, padding, Morton layouts, blocking and recursive
implementations of the LV Decomposition algorithm

To build code, 'make'

Output: timing data

Matrix Multiplication Optimizations0

Tiling and block data layout optimizations for Matrix Multiplication

Input files are from the illS Stressmark suite.

Compiler options:

CXX = gcc Version> 2.95, all platforms; tested on Solaris, Linux, Win32 with

Cygwin
CXXFLAGS = -Wall
CXXOPT = -03

To build code, 'make all'

Output: timing data
""'"

('
Transitive Closure0

Unified Space-Time Representation with Block Data Layout implementation of
Transitive Closure

Input files are generated by ../gen_input which creates NxN matrix

Compiler options:

CXX = gcc Version> 2.95, all platfonns; tested on Solaris, Linux, Win32 with

Cygwin
CXXFLAGS = -Wall
CXXOPT = -03

To build code, 'make'

Output: timing data

Flexible Memory Architecture Simulator and Trace Generators

EMSimulator: Simulator for explicit cache management. Simulates split
temporal spatial cache architectures.

(Includes Makefile for gcc Version> 2.95, any platform

2

WallacJR
154

To build code, 'make'

Trace Generation Programs:
Compile with MSYCC, Win32

When the executable is run, it produces intermediate files and then invokes
the simulator program. Final output is cache miss rates.

Trace_Matrix: Trace generation for matrix stressmark.

Trace_Neighbor: Trace generation for neighborhood stressmark.

Trace_Tree: Trace generation for binary tree.

Trace_Dijks1ra: Trace generation for Dijkstra's algorithm.

Exp _Matrix: Experiment of matrix stressmark on SUN machines.
Includes Makefile for Solaris
Requires GCC 3.0+, Sun machine/ UltraSP ARC III Cu

PIM Simulator and Sample Configuration Files

pimsim.pl: main simulator
wrapper.pl: GUI wrapper
fftp.inibicg: BiConjugate Gradient on Berkeley DIY A
node l.ini
node l.inia
node2.ini: Molecular Dynamics on ffiM BlueGene/L
node2.inia

These files comprise the PIM Simulator developed by the ADVISOR project. The
sources require at least Perl installed and in the system path to run. The GUI wrapper
requires Perl/Tk 5.0 to produce the user interface and chart generators.

The main simulator file is pimsim.pl

Create directory Isim under pimsim directory
Run 'perl wrapper .pI' to start GUI
else 'perl pimsim.pl -f filename'

Some sample modeling systems

'perl pimsim.pl-f nodel.ini' is a sample recursive system that models molecular
dynamics on BlueGene/L

'perl pimsim.pl-f ffip.inibicg' is a good approximation to BiCG on DNA
Output is diagnostic information and then timing for all runs of the simulator.

3

WallacJR
155

